

Monitor Schemes for Angle and Position Tuning of the European XFEL Beamline Mirrors

Simon Wright St Catharine's College, University of Cambridge

European XFEL WP-74

Supervisor: Dr. Jan Grünert

Simon Wright

XFEL European XFEL

- Operational by 2015
- Electron energy 17.5 GeV
- SASE 1 photon energy 12.4 keV, equivalent to 0.1nm
- Up to 27000 flashes per second
- Applications:
 - Structure of biomolecules
 - Nanoparticles
 - Filming chemical reactions
 - Extreme states of matter
 - And many more!

XFEL Photon Diagnostics

- Monitors ensure correct alignment
- Resolution < 10 μrad (100μm at 10m)</p>
- Mirrors:
 - Tuning range 1-3 mrad
 - ~ 1m long
 - Flat to nm scale

- Optical elements:
 - Slits
 - Mirrors
 - Monochromators
 - Attenuators

Diagram: H. Sinn, European XFEL WP-73 Presentation, 2010

XFEL Monitor Schemes

- Studied two possible solutions:
 - 'Pencil beam' setup
 - Small beam on mirror
 - Reflected onto photodiode
 - Diode signal gives angle

- 'Immersion' setup
 - Jarge beam over mirror
 - View reflected and unreflected images on screen
 - Distance between images gives angle

XFEL Pencil beam setup - trace

- Scan mirror through beam
 - 5mm range
- Trace taken by photodiode
- FWHM = L sin α

XFEL Pencil beam setup - limitations

- $D > L \sin \alpha$
 - beam too large \rightarrow FWHM = beam diameter
- $h > L \tan 2\alpha \cos \alpha$
 - diode too small → FWHM falsely small

XFEL Pencil beam setup - limitations

- $D > L \sin \alpha$
 - beam too large \rightarrow FWHM = beam diameter
- $h > L \tan 2\alpha \cos \alpha$
 - diode too small → FWHM falsely small

European **XFEL** Pencil beam setup - limitations

- $D > L \sin \alpha$
 - beam too large \rightarrow FWHM = beam diameter
- $h > L \tan 2\alpha \cos \alpha$
 - diode too small → FWHM falsely small

Nominal trace Misaligned **Diode too small**

XFEL Pencil beam setup - demonstration

What's different?

- Optical light
- Small, collimated beam
- Shorter mirror on linear + angular stage
- Operating range 3 4.2°

XFEL Pencil beam setup - discussion

- Measured angle = 4.33°
- Angle calculated from FWHM = 4.00°
- Diode too small

XFEL Pencil beam setup - discussion

- Measured angle = 4.33°
- Angle calculated from FWHM = 4.00°
- Diode too small

- Measured angle = 3.13°
- Angle calculated from FWHM = 3.06°
- Close to $D > L \sin \alpha$ limit.

XFEL Pencil beam setup - discussion

- Measured angle = 4.33°
- Angle calculated from FWHM = 4.00°
- Diode too small

- Measured angle = 3.13°
- Angle calculated from FWHM = 3.06°
- Close to $D > L \sin \alpha$ limit.

• At the XFEL

- 10mm diode can cover whole angular range
- Need only 2 degrees of freedom
 - Mirror y-motion
 - Mirror angular motion

Simon Wright

Monitor Schemes for Angle and Position Tuning of the European XFEL Beamline Mirrors

European

XFEL Immersion setup - geometry

- Immerse mirror in wide beam
- Two areas on screen
- Compare reflected/unreflected areas

•
$$\tan 2\alpha = \frac{\Delta s}{d}$$

• g can determine offset

XFEL Immersion setup - demonstration

Limitations:

- Alignment of mirror surface to rotation axis
- Fuzzy images
- Screen not perfectly flat

XFEL Immersion setup - discussion

 Δs diverges from prediction, increases with angle:

- Alignment error?
- Why does height not diverge?

- Screen:
 - + Easy to read
 - Need camera
 - Hard to achieve resolution (40µm required)
- Another solution?

XFEL Immersion setup with diode

- Use a thin, wide diode
 - Scan across image plane
 - Determine Δs and g from trace

XFEL Immersion setup with diode - demonstration

No slit used:

- Not enough intensity
- Mounting and alignment problems
 Inaccurate:
- Circular beam
- Small range of stage
- Easily misaligned when readjusted
- $\Delta s \text{ error} = 5 \text{mm}$
- Equivalent to 0.5°

However, should work better at XFEL

Thinner diode = easier to read

European XFEL CO	mparison		23
	Pencil beam	Immersion + screen	Immersion + diode
Degrees of freedom	2 fine + in/out	2 fine + in/out	3 fine
Ease of installation	Full range with 10mm diode.	20mm screen at 2m. Camera in vacuum chamber.	20mm diode range at 2m.
Required accuracy	<5µm over 5mm range. Achieved at FLASH.	<40μm in ∆s -> 20μm at 2m.	~10μm for 10μm high diode.
Ease of use	Easy to find FWHM.	Easy to read from screen.	Easy to find edges with small diode.
Conclusion	Easy to install. Easy to read. Good resolution.	Too much equipment. Uncertain resolution.	Good resolution. Untested. Extra degree of freedom.