

Measurement of the W+jet/Z+jet cross section ratio with the ATLAS detector

Author: Sten Luyckx

Supervisor: Gerhard Brandt

DESY Summer Student Program 2010

Content

- Introduction
- ATLAS Detector
- Data and MC
- Ratio Measurement
- Conclusion

Introduction

- What? $R_{jets} = \frac{\sigma(W + jets)}{\sigma(Z + jets)}$

- Show evolution of R_{iets} in terms of leading jet p_T
- Compare with theory predictions
- How?
 - Using only the electron Channel

6

Introduction

- Why?
 - Many systematic uncertainties cancel in the ratio
 - Don't need precise jet model
 - $\bullet\,$ We can improve the theory of W / Z
 - R_{jets} is sensitive to NLO effects
 - W /Z + jets is an important background process for top, higgs
 - $R_{\rm jets}\,can$ be used for background estimation
 - Deviations at high \boldsymbol{p}_{T} can indicate new physics
 - Enables searches in Jets + E_T^{miss} topology

ATLAS Detector

length = 42 m, diameter = 22 m, 7000 tons

Data and Monte Carlo

- Data
 - Sqrt(s) = 7 TeV pp collisions at the LHC
 - Period A-E7: April 18 August 18
 - 1456.9 nb⁻¹

- MC

- Simulate all W and Z decays
- Simulate background processes (e.g. top production, QCD)
- Need of different generators
 - Alpgen+Jimmy, NLO Jimmy and Sherpa
- Theory predictions: MCFM
 - Parton level MC generator

Selection

- Preselection

- Good Runlist
- Prim Vtx
 - with \geq 3 tracks
 - Compatible with beamspot in bunch crossing
- Trigger
 - L1_EM14
 - Trigger on Electromagnetic cluster
 - » Scan with 2x2 mask
 - » Find local maximum
 - » Get highest sum inside mask
 - » Sum >14 GeV accepted

Selection

- Electrons

- E-gamma algorithm with Author ID = 1 or 3
- E_T> 20 GeV,
- |η|<2.47 but remove crack (1.37-1.52)
- OTX cleaning
- Jets
 - Anti-kt4 algorithm
 - p_T>20 GeV, |η|<2.8
 - Remove bad and ugly jets
- Electron-Jet overlap removal
 - Remove closest jet to electron

Selection

- W selection

- 1 tight electron
- No 2nd medium (Zee veto)
- Missing $E_T > 25 \text{ GeV}$
- M_T >40 GeV
- Z selection
 - 2 medium electrons
 - 71 < M_{inv} < 111 GeV

→ 4189 W and 287 Z boson candidates selected inclusively

Inclusive results

Universiteit Antwerpen

12

6

- Correction to hadron level

$$N_V = \frac{N_{data}(1 - f_{QCD})(1 - f_{ewk})}{(A \times \epsilon) \cdot L}$$

 $A \times \epsilon = (A \times \epsilon)_{jet}$. $A_{MET|jet}$. $(A \times \epsilon)_{lepton|jet+MET}$

- N_{data} Selected events
- f_{QCD} QCD background fraction
- f_{ewk} Fraction of electroweak background
- A x ε Electron Acceptance x Efficiency
- L Luminosity
- N_V Number of corrected events (W or Z)

\rightarrow L and (A x ϵ)_{jet} cancel out in ratio Universiteit Antwerpen

Universiteit Antwerpen

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

100

90

E_T [GeV]

80

 $A_{MET|jet}$

$(A \times \epsilon)_{lepton|jet+MET}$

MET and lepton A x $\boldsymbol{\epsilon}$

Ľ

2

1

1.5

0.5

-0.5

-1

-1.5

-2

20

30

50

60

70

0

Result

- Data compared with MCFM

Summary

- Measured $R_{1-jet} = \frac{\sigma(W+1-jet)}{\sigma(Z+1-jet)}$ in pp collisions at LHC
- Implemented W and Z selection in the electron channel
- Result corrected to hadron level

Backup Slides

R_{jets} Systematics

2D: $P_T - R_{jets}$

1 vertical slice @ 80 GeV Poisson Distribution

