Simulation of XFEL pulse propagation through double crystal Laue monochromator

By Mark Khenkin

Supervisors: Liubov Samoylova,

Harald Sinn

Motivation

Motivation

Crystal monochromator for synchrotron radiation:

- ➢ For most cases Bragg geometry
- ➢Si perfect crystals
- >Band pass ($\Delta E/E$) defined by beam divergence
- >Non- or partially coherent source

Crystal monochromator for European XFEL:

- Laue geometry
- Diamond crystals
- >Angular divergence ~ 1 μ rad << $\Delta \theta_{crystal}$
- Almost fully transverse coherent source

to survive in extremely high peak heat loads

approximated by Gaussian beam

Gaussian beam

- θ angular divergence
- λ wavelength
- w_o beam waist width

Gaussian beam

Dynamical diffraction theory

V.A. Bushuev, JSR, 2008, p.495-505

Dynamical diffraction theory: extinction length

Pendellösung solution

Pendellösung solution

Double crystal monochromator (DCM)

DESY Summer Student Program | Students session | September 9th

European

Results

Results

Reflection curves and beam position

a, E=13 keV

b, E=16 keV

European

Reflection curves and beam position

a, E=13 keV

a, $\Delta \theta = 2.5$ arc. sec.

Integral intensity

crystal thickness 107 µm, angle deviation (green line) 2.5 arc. sec.

DESY Summer Student Program | Students session | September 9th

Optimized integral intensity

crystal thickness 107 μ m, angle deviation for red line was optimized for each step

DESY Summer Student Program | Students session | September 9th

Conclusions and outlook

- Slight asymmetry (~ 1 deg)
- Small deviations from exact Bragg angle (< 1µrad)
- Crystals thickness variation within few microns

are not critical

>Small thickness crystals (about 100 μ m) seems to be more suitable.

≻Crystal thickness can't be optimized for entire energy range (8-20 keV).

Environment for Laue DCM optimization was developed and can be used for further simulations.

Next step:

Simulations, taking into account time dependence. For instance, two short pulses separate in time.

Acknowledgments

My great thanks to:

➤V. Bushuev (Moscow State University)

≻L. Samoylova, H. Sinn and all the x-ray optics and beam transport group of XFEL

and all DESY personnel, who made this program available

Thank You for attention