Studies on the CMS Tracker Upgrade Project

Francesco Costanza Universitá degli Studi di Bari

DESY Summer Student Program 09/09/2010 sLHC

$\frac{dN}{dt} = \sigma L$ Luminosity Depends only on the machine!!

To have a greater event rate at LHC an upgrade is needed. **SLHC: super Large Hadron Collider** $L=10^{34} cm^{-2} s^{-1} \rightarrow 10^{35} cm^{-2} s^{-1}$

Principle aim - MORE STATISTICS

- improved accuracy of SM parameters;
- extend discovery in high mass regions;
- improve sensitivity to rare processes.

CMS Tracker

Silicon detector system - measures trajectories

- Barrel:
 - Inner pixel layer;
 - outer microstrip layer.
- Endcaps: coverage up to $|\eta| < 2.5$.

Large luminosity increase introduces problems

- Radiation damage:
 - lower temperature required to have higher radiation hardness → new cooling system
- Over occupancy:
 - Higher granularity required → more electronics, more material, more unwanted interactions

DESY Summer Student Program 2010

Prototypes cooling efficiency test setup

New detector module design needed → Set up a Prototype Test Lab

Prototypes cooling efficiency test setup

5

DESY Summer Student Program 2010

Sensor calibration setup

Sensor calibration results

DESY Summer Student Program 2010

Thermal conductivity measurement setup

DESY Summer Student Program 2010

Studies on the CMS Tracker Upgrade Project

8

Sensor calibration results

Sensor	T(°C)	T(°C)	T(°C)	
0	4	12	22	
1	12.5	20.25	30	
2	8.4	16.4	25.6	
3	8.9	16.65	25.5	
4	23	2435	25.5	
5	48	48	48	
6	2.3	10.5	1935	
7	2.3	10.5	19.5	
9	1	10	19	
	220	225	242	
K	220	233	Z4Z	

More than expected!!

Non-uniform temperature gradient, uniform temperature gradient expected if convection and radiation could be neglected.

9

DESY Summer Student Program 2010

Equations

Fourier's law

Newton's law

Stefan – Boltzmann law

$$\vec{q} = -k\nabla T$$
$$\frac{dQ}{dt} = -h(T_{env} - T(t))ds$$
$$\frac{dQ}{dt} = \epsilon \sigma (T(t)^4 - T_{env}^4)ds$$

- \vec{q} local heat flux (W/m²)
- k material's conductivity (W/m·K)
- T temperature of the object
- *Q* thermal energy
- **h** Heat transfer coefficient (W/m^2k)
- ds surface area from where the heat is transferred
- T_{env} temperature of the environment
- *emissivity* coefficient of the surface
- σ Stefan Boltzmann constant

DESY Summer Student Program 2010 10 Studies on the CMS Tracker Upgrade Project

Constrains and Coefficients

k_table = 130 W/mK(aluminum)
k_rod = 170 W/mK(aluminum)
k_spreader = 130 W/mK(aluminum)
k_wires = 400 W/mK(copper)
k_res = 5 W/mK(carbon paste)
k_res env = 2 W/mK(ceramic)

 $h_{air} = 15 W/m^2 K$ $T_{air} = 15 K$

 $\epsilon_{metals} = 0.2$ $\epsilon_{ceramics} = 0.8$

DESY Summer Student Program 2010

Simulations results

12

Qualitative agreement with data

DESY Summer Student Program 2010

Conclusions and Outlooks

Achivements:

- Temperature sensors have been correctly calibrated.
- The setup for measuring the thermal conductivity coefficient has been tested.
- A quite satisfactory simulation has been developed.

Things to be done:

- Fine tuning of the simulation parameters.
- Improvement of the setup (fixing air leak,...)

DESY Summer Student Program 2010

Appendix

$$\frac{dN}{dt} = \sigma L$$

where:

- *N* is the number of interactions;
- L is the instantaneous luminosity;
- σ is the total cross-section of the process.

In a storage ring collider:

$$L = f k \frac{N_1 N_2}{A}$$

where:

- *f* is the revolution frequency;
- k is the number of bunches in one beam in the storage ring;
- N_i is the number of particles in each bunch;
- A is the cross section of the beam.

DESY Summer Student Program 2010