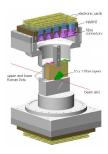
The ALFA detector

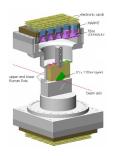
ALFA metrology and test-beam analysis


Adrian Driewer

September 10th 2009

- 1 The ALFA detector
 - Luminosity measurements
 - Setup
 - Detector
- 2 Test-beam in August '08
 - Setup
 - Results
- Metrology measurements
 - Good plate
 - Bad plate
- 4 Summary

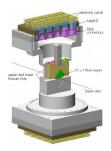
The ALFA detector


2 detectors that measure the luminosity for ATLAS: ALFA (Absolute Luminostiy for ATLAS)

2 detectors that measure the luminosity for ATLAS: ALFA (Absolute Luminostiy for ATLAS)

&

LUCID (Luminosity measurement using Cherenkov Integrating Detector)

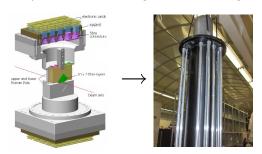


The ALFA detector

2 detectors that measure the luminosity for ATLAS: ALFA (Absolute Luminostiy for ATLAS)

&

LUCID (Luminosity measurement using Cherenkov Integrating Detector)

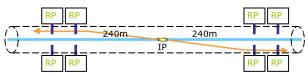

- + Absolute measurement
- Luminosity $< 10^{27} cm^{-1} s^{-1}$
- + Luminosity up to $10^{34} cm^{-1} s^{-1}$
- relative measurement

The ALFA detector

2 detectors that measure the luminosity for ATLAS: ALFA (Absolute Luminostiy for ATLAS)

&

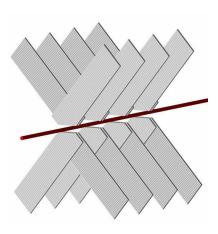
LUCID (Luminosity measurement using Cherenkov Integrating Detector)


- + Absolute measurement
- Luminosity $< 10^{27} cm^{-1} s^{-1}$
- + Luminosity up to $10^{34} cm^{-1} s^{-1}$
- relative measurement
- ⇒ Calibrate LUCID with ALFA at low luminosity runs

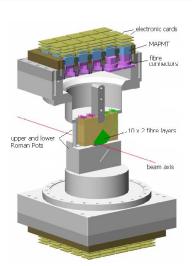
Where to find the ALFA detector

The ALFA detector

0000

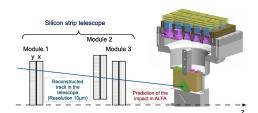


The detector


A detector on the measuring setup

4 detectors in a row

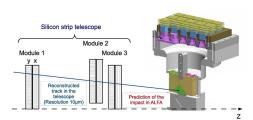
The detector

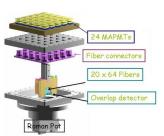

Metrology measurements

A detector on the measuring setup

Detectors installed in a roman pot

Test-beam setup


The ALFA detector


Scheme of the prototype-2 roman pot in the SPS test beam line with a silicon strip telescope

Test-beam setup

The ALFA detector

Scheme of the prototype-2 roman pot in the SPS test beam line with a silicon strip telescope

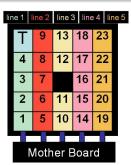
Schematic view how the detectors are connected to the read out electronics

Layer configurations

two different readout systems

- test board from LAL Orsay:
 able to read out two rows of 5 PMTs
- motherboard made in Lund as a version of the final ALFA electronics:
 - read out of all 23 PMTs

Layer configurations

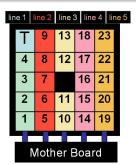

two different readout systems

test board from LAL Orsay: able to read out two rows of 5 PMTs

Test-beam in August '08

 motherboard made in Lund as a version of the final ALFA electronics:

read out of all 23 PMTs



Layer configurations

two different readout systems

- test board from LAL Orsay: able to read out two rows of 5 PMTs
- motherboard made in Lund as a version of the final ALFA electronics:

read out of all 23 PMTs

measured lines

1&2 4&5, 3&5, 2&4, 2&5, 1&5

several threshold cuts to generate digital signals (DAC)

1000, 1500, 2000, 2500, 3000

Used configurations

The ALFA detector

several threshold cuts to generate digital signals (DAC)

1000, 1500, 2000, 2500, 3000

different voltage for the PMTs (HV)

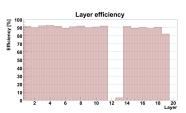
800, 850, 900, 950 V

Used configurations

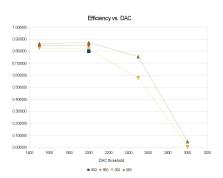
several threshold cuts to generate digital signals (DAC)

1000, 1500, 2000, 2500, 3000

different voltage for the PMTs (HV)

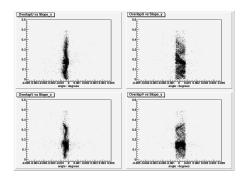

800, 850, 900, 950 V

some overall gain factors for all channels (GAIN)


8, 16, 24, 30

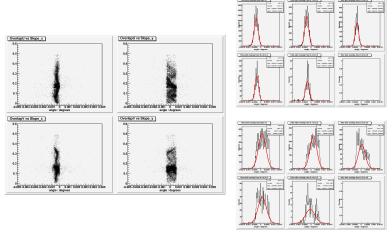
Layer efficiency

The ALFA detector

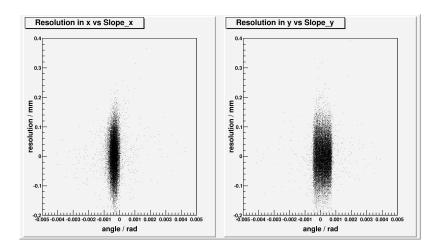

Layer efficiency for basic sample: HV=900V, DAC=2000, Gain=16

Layer efficiency dependence on the threshold and high voltage

Angle dependency


The ALFA detector

The angle dependency of the size of the overlap region


Angle dependency

The ALFA detector

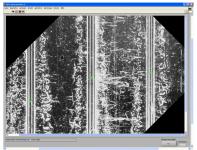
The angle dependency of the size of the overlap region

Angle dependency

The angle dependency of the resolution

The measuring setup

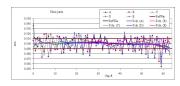
Test-beam in August '08


The measuring setup

•000

The measuring setup

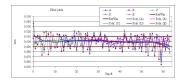
The ALFA detector



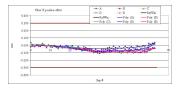
The measuring setup

Screenshot during the measurement

Example of a measured metrology

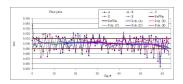

The ALFA detector

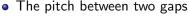
• The pitch between two gaps


Metrology measurements

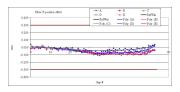
• Reference: $500\mu m$

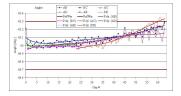
Example of a measured metrology

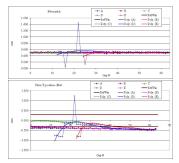

The ALFA detector


- The pitch between two gaps
- Reference: $500\mu m$

 Offset of the measured value from the reference


Example of a measured metrology

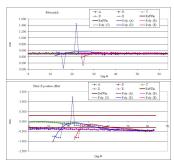

The ALFA detector



 Offset of the measured value from the reference

- Angle of the gaps
- Reference: 45°

Bad plate: A2-2 Pl.4

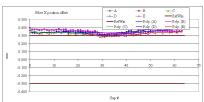


Apparently something went wrong

Test-beam in August '08

Bad plate: A2-2 Pl.4

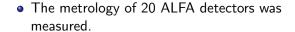
The ALFA detector


Apparently something went wrong

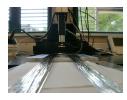
 \rightarrow a \sim 300 μ m gap!

Bad plate: A2-2 Pl.4

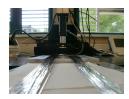
The ALFA detector

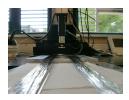


Manual measuring proved the size of the gap

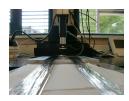


Picture of the $\sim 300 \mu m$ gap


The ALFA detector

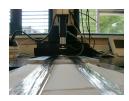

Metrology measurements

The ALFA detector


- The metrology of 20 ALFA detectors was measured.
- The quality of one plate is so bad that it cannot be used.

 The metrology of 20 ALFA detectors was measured.

Metrology measurements


- The quality of one plate is so bad that it cannot be used.
- The analysis of the layer efficiency dependence on the threshold shows that a DAC>2000 impairs the efficiency.

 The metrology of 20 ALFA detectors was measured.

Metrology measurements

- The quality of one plate is so bad that it cannot be used.
- The analysis of the layer efficiency dependence on the threshold shows that a DAC>2000 impairs the efficiency.
- A closer look to the angle dependency proved that there is none.

- The metrology of 20 ALFA detectors was measured.
- The quality of one plate is so bad that it cannot be used.
- The analysis of the layer efficiency dependence on the threshold shows that a DAC>2000 impairs the efficiency.
- A closer look to the angle dependency proved that there is none.

Thank you for your attention!