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Physics is about experiments...

“Mathematics is the part of physics where experiments are cheap”
- V.I. Arnold
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Outline

Outline

Aim of this talk: a short introduction to integrability and why the zero
curvature representation is important, and the construction of an infinite
number of conserved quantities for the sinh-Gordon equation.
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What is an integrable system?

Examples of integrable systems

Euler’s top, Coulomb potential, harmonic oscillator, KdV equation,
Heisenberg spin chain, Nahm equations, Landau-Lifshitz equation,
(anti-)self-dual Yang Mills equations, nonlinear Schrodinger equation,
sine-Gordon and sinh-Gordon equations.

Could also be called “exactly solvable models”

Physical motivation for studying: occur in different areas of physics,
eg classical mechanics, magnetism, gauge theories. Admit exact
solutions, sometimes solitons (particle-like).
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What is an integrable system?

What does it mean to be integrable?

For a system with n degrees of freedom we need n conserved
quantities which are compatible in the sense that their Poisson
brackets commute (Hamiltonian formalism)

So for an infinite dimensional system (field theory) we need an infinite
number of conserved quantities

How do we produce these?

As an example, and to learn how, study the sinh-Gordon equation
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What is an integrable system?

Sinh-Gordon equation

One scalar field φ = φ(x , t)

Defined on a two-dimensional space-time with periodic boundary
conditions: φ(x , t) = φ(x + R, t)

The sinh-Gordon Hamiltonian is

H =

∫ R

0
dx

(
1

2
π2 +

1

2
(φ′)2 + m2 cosh 4φ

)
where π = φ̇.

The equation of motion is

φ̈− φ′′ = −4m2 sinh 4φ

known as the sinh-Gordon equation
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Zero curvature condition

Sinh-Gordon rewritten

Key observation: the sinh-Gordon equation φ̈− φ′′ = −4m2 sinh 4φ is
equivalent to

[∂t − V , ∂x − U] = 0⇔ V ′ − U̇ + VU − UV = 0

for the two two-by-two matrices

U(x , t, λ) =

(
φ̇ mλ−1e2φ + mλe−2φ

mλ−1e−2φ + mλe2φ −φ̇

)

V (x , t, λ) =

(
φ′ −mλ−1e2φ + mλe−2φ

−mλ−1e−2φ + mλe2φ −φ′
)
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Zero curvature condition

What are these matrices?

We interpret U and V as auxiliary gauge fields. At each point (x , t)
we imagine U and V acting on a two-dimensional vector space.

Can use U and V to define a generalised (covariant) differentiation of
vectors, Dxψ = (∂x − U)ψ, Dtψ = (∂t − V )ψ.

This also gives us a method for parallel transporting vectors from
(x , t) to (x ′, t ′); the parallel transport of a vector ψ along a curve γ is
defined by the conditions that

(∂x − U)ψ = 0 (∂t − V )ψ = 0

along γ

In practice use matrix operators to parallel transport vectors
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Zero curvature condition

Parallel transport operators

Consider just the x-direction, path from y to x , seek a matrix T (x , y)
such that for a vector ψ, ψ′ = Tψ satisfies (∂x − U)ψ′ = 0, i.e.

(∂x − U)T = 0 T (x , x) = I

The solution is

T (x , y , λ) = P exp

(∫ x

y
dx U(x , λ)

)
The monodromy matrix is the operator of parallel transport for a
path starting at x = 0 and finishing at x = R.

M(λ) = P exp

(∫ R

0
dx U(x , λ)

)
Similarly in t-direction, have S(t1, t2, λ) = P

∫ t2
t1

dt V (t, λ)
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Zero curvature condition

What is curvature?

The curvature of the connection is the commutator [∂t −V , ∂x −U].
The zero curvature condition is the condition that
[∂t − V , ∂x − U] = 0.

If ψ1 and ψ2 are the vectors obtained by parallel transporting some
vector ψ along two different paths with the same endpoints, then the
curvature measures the difference between ψ1 and ψ2.

A simplified way to see this is to consider the following path:

(x, t) (x + dx, t)

(x+dx,t+dt)(x, t + dt)
ψ → ψ + (∂x − U)ψdx
→ ψ+(∂x−U)ψdx+(∂t−V )ψdt+(∂t−V )(∂x−U)ψdxdt

while
ψ → ψ + (∂t − V )ψdt
→ ψ+(∂t−V )ψdt+(∂x−U)ψdx+(∂x−U)(∂t−V )ψdxdt

The difference is ψ − ψ = [∂t − V , ∂x − U]ψdxdt.
Zero curvature condition implies ψ = ψ, ie parallel
transport is well-defined, independent of path.
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Zero curvature condition

Monodromy matrix contd

In particular, parallel transport
around a closed path is the
identity.

For the path shown we have:
x = 0 x = R

t = t1

t = t2

M(λ)|t1S(R)M−1(λ)|t2S−1(R) = I

⇒ M(λ)|t1 = S(R)M(λ)|t2S−1(R)

⇒ M(λ)|t1 ∼ M(λ)|t2 ⇒ tr M(λ)|t1 = tr M(λ)|t2
So the trace of the monodromy matrix is constant in time, and can be

used to generate conserved quantities!
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Monodromy matrix contd
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Conserved quantities for sinh-Gordon

Constructing the conserved quantities

The idea is to gauge transform U into a simple form.

Gauge transformations are transformations of the gauge fields U, V
which leave the physical situation (sinh-Gordon equation) unchanged.

We gauge transform via invertible matrices g acting by conjugation:

∂x − U → g−1(∂x − U)g = ∂x + g−1∂xg − g−1Ug

We can find gauge transformations so that U becomes diagonal, then

it is straightforward to calculate M(λ) = P exp
(∫ R

0 dx U(x , λ)
)

. We

then look at the trace for λ→∞, λ→ 0, find expansions

log trM(λ)→ λ±1R −
∞∑

k=1

λ∓kH±k

where the H±k are conserved quantities of the form H±k =
∫ R
0 dx I±k
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Conserved quantities for sinh-Gordon

Conserved quantities - results

For instance we find

H±1 = −
∫ R

0

dx

(
1

2
(φ̇± φ′)2 + m2 cosh 4φ

)
Note that the Hamiltonian is given by

H = −1

2
(H+

1 + H−1 )

and the momentum P =
∫ R
0 dx φ̇φ′ by

P = −1

2
(H+

1 − H−1 )

So we have an infinite number of conserved quantities H±k .

Can show using the r -matrix formalism that these are all Poisson
commuting and so the sinh-Gordon equation is integrable
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Conserved quantities for sinh-Gordon

Conserved quantities - what else can we do?

Similar methods apply to a broad class of systems which admit a zero
curvature representation.

Sinh-Gordon equation is the simplest version of an affine Toda field
theory - an infinite family of field equations with Hamiltonian

H =

∫ R

0
dx

(
1

2
π2 +

1

2
(φ′)2 + 2m2

r∑
i=0

1

α2
i

e2αi ·φ

)

where φ = (φi ) is an r -component vector of r scalar fields, π consists
of the conjugate momenta, and the αi are the simple roots of an
affine Lie algebra (special vectors characterising the algebra uniquely)

Can also use conserved quantities H±k as higher Hamiltonians to
define deformations of our solutions, giving links to other integrable
systems.
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Conclusion

Conclusion

Integrability gives us a powerful tool for analysing many systems in
both mathematics and physics

Characteristics of integrability: conserved quantities, zero curvature
representation, Hamiltonian structure...
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