DESY Summerstudent Program 2007

Muon Efficiency Corrections in ZEUS

Jan Ziemann Universität Dortmund

The ZEUS Detector

Muons in ZEUS

 Muons, as charged particles, yield tracks in the ZEUS inner tracking detectors.

• Muons, as minimum ionizing particles, loose a well defined amount of energy in the calorimeter along their trajectory

• Muons, due to their high penetration power, are usually the only particles which can reach the different element of the dedicated muon detection system.

Muon efficiency

- Not every time when a muon hits a muon detector, we get a signal (finite efficiency of the detector)
- Due to their energy lost, not every muon reachs the detector
- Both is not fully correctly implemented in Monte Carlo => efficiency is too high in MC
- => We need efficiency corrections for MC

Muon finders in ZEUS

- There are different muon reconstruction algorithms which uses different detector components (calorimeter, muon chambers ...)
- MV: uses calorimeter MIP information
- MPMATCH: uses forward muon detector
- BREMAT: uses barrel and rear muon detector
- MUBAC: uses backing calorimeter

We start from muons identified by MV and use this information to determine the efficiency of the other detectors

dimuon events

• We are using dimuon events because they have a very clean signature (low background)

Weighting of BH and J/ψ

The efficiency depends on the transverse momentum

=> it's important to have the same spectrum in data and MC

- The invariant mass of the dimuon system is used to find the right mixture of jpsi and bh

$$m_{\mu\mu,in\nu} = \sqrt{(E_{\mu_1} + E_{\mu_2})^2 - (p_{\mu_1} + p_{\mu_2})^2}$$
$$E_{\mu} = \sqrt{p_{\mu}^2 + m_{\mu}^2}$$

Counting muons ...

pseudo-rapidity $\eta = -\ln \tan \theta / 2$

 $1.60 \, GeV \le p_t \le 1.70 \, GeV$

Efficiency in data and Monte Carlo

number of muons seen by a finder

total number of muons

Efficiency =

efficiency 0.9 D.8 red: data 0.7 blue: MC 0.6 0.5 0.4 0.3 0.2 MUBAC data 96-00 0.1 *-- MUBAC MC 96-00 0 -3 -2 -1 2 3 D 4 nμ

 $1.60 \, GeV \le p_t \le 1.70 \, GeV$

N(MV+MUBAC)

N(MV)

Efficiency Correction

data efficiency

Efficiency correction =

Monte Carlo efficiency

Conclusions / Summary

- The efficiency corrections are calculated and are ready for use
- It works
- They are needed for some upcoming papers
- They will be used in many future analysis
- A ZEUS note about it will be published soon