DESY Summer Student Program 2007

Dilepton SUSY studies with ATLAS

Simone Hamerla

Why supersymmetry?

- SM describes most phenomena
- But:

- no reason for amount of particles
- no <u>Grand Unification Theory</u> (GUT)
- hierarchy problem:

electroweak scale mw <<m_P = 10^{19} GeV

- dangerous corrections to higgs mass

needs same interaction with opposite sign

fermion

boson

boson fermion - new sparticles lepton number change spin by $\frac{1}{2}$ \implies selectron S = 0 gluino S = 1/2analogue to L, B: R parity conserved $R = (-1)^{3B+L+2S}$ consequences: -only sparticle pairs -must be stable LSP (Lightest Supersymmetric Particle) - χ_1^0 neutralino good candidate for cold dark matter

SUSY not exact symmetry:

sparticles must be heavier than particle because no sparticle seen yet

Symmetry breaking by gravitino (mSugra model)

higher mass means one needs more energy / new colliders

like the LHC Large Hadron Collider

Distribution in proton : primary sparticles mainly squark/squark squark/antisquark gluino/squark gluino/antisquark Dilepton SUSY studies with ATLAS

Atlas detector

(A Toroidal LHC AparatuS)

- opposite sign leptons l
- same flavour (lepton number)
- slepton only one visible daughter

from invariant mass you get mass difference between the two neutralinos $m_{11}\approx m_{\chi^0_2}-m_{\chi^0_1}$

all based on generator information: know mother/daughter/type etc.

How can we <u>identify</u> leptons on real data?

try method on truth generator data

now try reconstructed data

-use electrons and muons -opposite sign same flavour OSSF -highest transverse momentum $\eta < 2.5$

-still influence of other particles faking leptons

<u>compare muon and electron</u>

although nice triangular shape for muons still effects from detector resolution

Resolution for invariant mass

gaussian function with width of 1.34 GeV

-invariant mass smeared out -more points move to upper part of edge than down

fit convolution of gaussian function and triangle

expected to be in middle of edge :

$m_{11} \approx (99.15 \pm 0.46) \text{GeV}$

Conclusion:

- faking electrons easier than faking muons
- with muon good triangular shape can be received using: p_T cut
 - convolution with gaussian function

calculated mass	received mass
difference	difference
100 GeV	99.15 GeV

- data correspond to luminosity of 672pb⁻¹
- could be reached after 3 months

