

Measuring ultrashort laser pulses

Alejandro Guzman

The Earth

Germany

Hamburg

This is the FLASH

To Sternschanze

The laser system ...

The Autocorrelator

The Autocorrelator (inside out)

Second harmonic generation

In any media: $\mathbf{D} = \boldsymbol{\epsilon}_0 \mathbf{E} + \mathbf{P}$

In linear media:
$$\begin{aligned} \mathbf{P} &= \chi \boldsymbol{\varepsilon}_0 \ \mathbf{E} \\ \mathbf{D} &= \boldsymbol{\varepsilon}_0 \mathbf{E} + \chi \boldsymbol{\varepsilon}_0 \ \mathbf{E} = \boldsymbol{\varepsilon}_0 (1 + \chi) \mathbf{E} \end{aligned}$$

But in a SHG crystal, the polarization (\mathbf{P}) is also proportional to the square of the electric field (E), in fact the a more general expression for P would be:

$$P = \varepsilon_0 \sum_i \chi_i E^i \qquad P = \varepsilon_0 \chi_1 E + \varepsilon_0 \chi_2 E^2$$

For example take an electric field oscillating in time:

$$E(t) = E_0 e^{i(wt+\phi)} \Longrightarrow P(t) \propto (E_0 e^{i(wt+\phi)})^2$$

The physical mechanism behind frequency doubling can be understood as follows. Due to the χ_2 nonlinearity, the incident wave generates a nonlinear polarization wave which oscillates with twice the incoming frequency. According to Maxwell's equations, this nonlinear polarization wave radiates an electromagnetic field with this doubled frequency.

 $P(t) \propto (E_0 e^{i(wt+\phi)})^2$ $P(t) \propto e^{i2\omega}$

Autocorrelation function

DESY

The intensity autocorrelation is defined by:

$$A(\tau) = \int_{-\infty}^{\infty} I(t)I(t-\tau)dt$$

This formula in words, measures how much the function I(t) resembles a time shifted version of itself.

The important feature of this function is: its FWHM is proportional to the pulse length. Depending on the shape of the pulse this proportionality factor can be calculated .

What is measured at the detector's position is the intensity,

$$I(\tau) = \int_{-\infty}^{\infty} |E_1(t' - \tau) + E_2(t')|^2 dt'$$

Expanding we get the term we are looking for:

$$I_{s}(\tau) = \int_{-\infty}^{\infty} \left| E(t)E(t-\tau) \right|^{2} dt = \int_{-\infty}^{\infty} I(t)I(t-\tau) dt$$

Using Lab view

Using Lab view

Rohance That

A troubling dilemma: asking questions or...

coffee?

