Heavy quark effective theory

Bagrov Andrey (Moscow State University, Russia)
Supervisor: Prof. Ahmed Ali

Main problems of HEP

- Phenomenon of generations
- Origin of baryogenesis
- Connections between flavor physics and TeV -scale physics

Necessity of precision calculations of the SM parameters.

Main ideas of HQET

- Heavy hadron contains a charm or a bottom quark
- Exchange of soft gluons
- Perturbation in $\frac{\Lambda_{e c o}}{m_{e}}<1$

First approximation: the HQ moves with hadron's velocity

Deviations of the behavior of the system from the ideal case are described by $\left(\frac{1}{m_{\ell}}\right)^{n}$ terms.

Structure of HQET

$$
\begin{gathered}
L_{Q C D}=-\frac{1}{4} G_{\mu v}^{A} G^{A \mu v}+\bar{q}\left(i \hat{D}-m_{Q}\right) q+\text { counterterms } \\
L_{Q C D}\left(m_{Q} \rightarrow \infty\right)=\bar{Q}_{v}(i v \cdot D) Q_{v} \\
\left(\frac{1+\hat{v}}{2}\right) Q_{v}=Q_{v} \\
L=L_{0}+L_{1}+\ldots \\
L_{1}=-\bar{Q}_{v}\left(\frac{D_{\perp}^{2}}{2 m_{Q}}\right) Q_{v}-a(\mu) g \bar{Q}_{v}\left(g_{\mu v} \frac{G^{\mu v}}{4 m_{Q}}\right) Q_{v}
\end{gathered}
$$

Structure of HQET

- However, we can not obtain several matrix elements, that are necessity for calculations, within the framework of HQET
- For example, these are matrix elements

$$
\begin{gathered}
\mu_{\pi}^{2}(\mu) \equiv \frac{1}{2 M_{B}}\langle B| \bar{b}(i \vec{D})^{2} b|B\rangle_{\mu}, \quad \mu_{G}^{2}(\mu) \equiv \frac{1}{2 M_{B}}\langle B| \bar{b} \frac{i}{2} \sigma_{j k} G^{j k} b|B\rangle_{\mu} \\
\rho_{D}^{3}(\mu) \equiv \frac{1}{2 M_{B}}\langle B| \bar{b}\left(-\frac{1}{2} \vec{D} \cdot \vec{E}\right) b|B\rangle_{\mu}, \quad \rho_{L S}^{3}(\mu) \equiv\langle B| \bar{b}(\vec{\sigma} \cdot \vec{E} \times i \vec{D}) b|B\rangle_{\mu} .
\end{gathered}
$$

which arise in the Lagrangian in high orders of the inverse quark mass.

- So, we should carry out experimental measurements or make non-perturbative calculations

B-meson decays

$$
B \rightarrow X_{c} / v_{l}
$$

$$
B \rightarrow X_{s} \gamma
$$

- Described by HQET
- Allow to obtain SM parameters:

$$
\begin{gathered}
\Gamma_{s l}(b \mapsto c)=\frac{G_{F}^{2} m_{b}^{5}(\mu)}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left(1+A_{e w}\right)\left[z_{0}(r)\left[1+A_{3}^{\text {pert }}(r, \mu)\right]\left(1-\frac{\mu_{\pi}^{2}(\mu)-\mu_{G}^{2}(\mu)+\frac{\rho_{D}^{3}(\mu)+\rho_{L S}^{3}(\mu)}{m_{b}(\mu)}}{2 m_{b}^{2}(\mu)}\right)\right. \\
-\left(1+A_{5}^{\text {pert }}(r, \mu)\right) 2(1-r)^{4} \frac{\mu_{G}^{2}(\mu)-\frac{\rho_{D}^{3}(\mu)+\rho_{L S}^{3}(\mu)}{m_{b}^{3}(\mu)}}{m_{b}^{2}(\mu)}+\left(1+A_{D}^{\text {pert }}\right) d(r) \frac{\rho_{D}^{3}(\mu)}{m_{b}^{3}(\mu)} \\
+32 \pi^{2}\left(1+A_{6 c}^{\text {pert }}(r)\right)(1-\sqrt{r})^{2} \frac{H_{c}}{m_{b}^{3}(\mu)}+32 \pi^{2} \widetilde{A}_{6 c}^{\text {pert }}(r)(1-\sqrt{r})^{2} \frac{\widetilde{H}_{c}}{m_{b}^{3}(\mu)} \\
\left.+32 \pi^{2} A_{6 q}^{\text {pert }}(r) \frac{F_{q}}{m_{b}^{3}(\mu)}+O\left(\frac{1}{m_{b}^{4}}\right)\right]
\end{gathered}
$$

Experimental approach

- Straight measurement of moments:

$$
R_{n}\left(E_{\text {cut }}, \mu\right)=\int_{E_{\text {cut }}}(V-\mu)^{n} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} V} \mathrm{~d} V
$$

- Minimization of the χ^{2} function:

$$
\chi^{2}=\sum_{i, j}\left(\langle X\rangle_{i}^{\text {meas }}-\langle X\rangle_{i}^{\text {pred }}\right) \operatorname{cov}_{i j}^{-1}\left(\langle X\rangle_{j}^{\text {meas }}-\langle X\rangle_{j}^{\text {pred }}\right) .
$$

Experimental results

$$
\begin{aligned}
& \left|V_{c b}\right|=(41.93 \pm 0.65 \pm 0.07 \pm 0.63) \cdot 10^{-3} \\
& B_{c l v}=(10.590 \pm 0.164 \pm 0.006) \% \\
& m_{b}=(4.564 \pm 0.076 \pm 0.003) \mathrm{GeV} \\
& m_{c}=(1.105 \pm 0.116+0.005) \mathrm{GeV} \\
& \mu_{\pi}^{2}=(0.557 \pm 0.091 \pm 0.013) \mathrm{GeV}^{2} \\
& \mu_{G}^{2}=(0.358 \pm 0.060 \pm 0.003) \mathrm{GeV}^{2} \\
& \tilde{\rho}_{D}^{3}=(0.162 \pm 0.053 \pm 0.008) \mathrm{GeV}^{3} \\
& \tilde{\rho}_{L S}^{3}=(-0.174 \pm 0.098 \pm 0.003) \mathrm{GeV}^{3}
\end{aligned}
$$

Lattice calculations

- We can avoid experimental measurements and carry out numerical calculations of matrix elements, form-factors etc.
- A quark field is presented as a function on a discrete space-time lattice.
- Only interactions between neighboring vertices of the lattice are taken into account by exchange of gluons.

Lattice calculations

$$
\begin{gathered}
S_{L Q C D}=\sum_{x, y} Q^{+}(x)\left(\delta_{x, y}-K_{Q}(x, y)\right) Q(y) \\
K_{Q}(x, y) \equiv\left(1-\frac{a H_{0}}{2 n}\right)_{t+1}^{n}\left(1-\frac{a \delta H}{2}\right)_{t+1} \delta_{4}^{(-)} U_{4}^{+}(t)\left(1-\frac{a \delta H}{2}\right)_{t}\left(1-\frac{a H_{0}}{2 n}\right)_{t}^{n} \\
\delta_{4}^{(-)} \equiv \delta_{x_{4}-1, y_{4}} \delta_{x, \vec{y}} \\
H_{0} \equiv-\frac{\Delta^{2)}}{2 m_{Q}}, \\
\delta H \equiv-c_{B} \frac{g}{2 m_{Q}} \vec{\sigma} \cdot \vec{B} . \\
=\sum_{i=1}^{3}\left[U_{i}(x) Q(x+\hat{i})+U_{i}^{+}(x-\hat{\imath}) Q(x-\hat{i})-2 Q(x)\right]
\end{gathered}
$$

Results of lattice calculations

$$
\begin{aligned}
& \left|V_{c b}\right|=(40.8 \pm 0.9) \times 10^{-3}, \\
& m_{b}=(4.74 \pm 0.10) \mathrm{GeV}, \\
& \bar{\Lambda}=0.68_{0.12}^{+0.02} \mathrm{GeV}, \\
& \lambda_{1}=-\mu_{\pi}^{2}=-(0.45 \pm 0.12) \mathrm{GeV}^{2} .
\end{aligned}
$$

Conclusions

- Use of the HQET allows one to obtain several important parameters of the SM.
- These methods have allowed to improve the precision in the knowledge of several fundamental parameters in the Nature.
- A number of hadronic matrix elements are determined for the moment analysis of the semileptonic and radiative B-decays.
- Lattice calculations are very promising but not yet precise enough.

