R. Yoshida, ANL 7 September 2004 at DESY

A summary of experimental results at ICHEP04

- QCD at Tevatron II
- Hadron spectroscopy
- Quark-Gluon plasma
- Quark mixing
- Neutrino mixing
- Electroweak (top mass)
- Higgs search
- Particle astrophysics and cosmology
- Final remarks
 - Not summarized: results from HERA, future colliders, detectors.. and many others.

Apologies in advance for oversimplifications, omissions and mistakes.

Most slides taken from plenary talks:

My comments are in red boxes

Inclusive Jet P_T Cross section

First jet cross-section results from the Tevatron II: Jetenergy scale unc. still large (should improve with more data)

Tevatron is starting to use modern jet algorithms

Beauty and Charm production at Tevatron: agree with latest theory. Consistent picture with LEP and HERA?

Summary of Θ^+ pentaquark reports

Jin

Experiment	Mass(MeV)	$\mathrm{Width}(\mathrm{MeV})$	Reaction	Production	
SPring-8	$1540{\pm}10$	< 25	γn	nK^+	
DIANA	1539 ± 2	< 9	K^+Xe	$nK^+ \rightarrow pK_s^0$	
CLAS-1	1542 ± 5	< 21	γd	nK^+	
SAPHIR	$1540{\pm}4\pm2$	< 25	γp	nK^+	
ITEP	1533 ± 5	< 20	$\nu CC, \overline{\nu}CC$	pK_s^0	
CLAS-2	1555 ± 10	< 26	γp	nK^+	
ALICE	$1532 \pm -$	< -	CC	pK_s^0	
HERMES	$1528 \pm 2.6 \pm 2.1$	$17\pm9\pm3$	γd	pK_s^0	
COSY-TOF	1530 ± 5	$< 18 \pm 4$	pp	$\Sigma^+ p K_s^0$	
SVD-2	$1526\pm3\pm3$	< 24	pN	pK_s^0	
JINR-1	$1545.1{\pm}12.0$	16.3 ± 3.6	pC_3H_3	pK_s^0	8±4 MeV
ZEUS	$1521.5{\pm}1.5^{+2.8}_{-1.7}$	6.1 ± 1.6 +2.0	ep	$pK_s^0, \overline{p}K_s^0$	
JINR-2	$1541{\pm}4$	8 ± 4	np	nK^+	
NA49	$1535\pm$ -	—	pp	pK_s^0	

Some speakers commented on a "width" inconsistency of Θ^+ (<1 MeV from partial wave analysis of nK results. See review in PDG by Trilling.) Hermes and ZEUS see significantly wider width than other positive expts. (?)

Close and Zhao

Masses of "two decay modes" appear to be inconsistent

Summary of negative pentaquark reports

Experiment	Θ^+ (1540)	∃ (1862)	$D^{*-}p(3100)$	Reaction
	$(uudd\overline{s})$	$(ddss\overline{s})$	$(uudd\overline{c})$	
► HERA-B	NO	NO		$pA \to \Theta^+ X, \ \Xi^{} X$
E690	NO	NO		$pp \to \Theta^+ X, \ \Xi^{} X$
CDF	NO	NO	NO	$p\overline{p} \to \Theta^+ X, \ \Xi^{} X, \ \Theta^c X$
HyperCP	NO			$\pi, K, p \to \Theta^+ X$
BaBar	NO	NO		$e^+e^- \to \Theta^+ X, \ \Xi^{} X$
ZEUS	yes	NO	NO	$ep \to \Theta^+ X, \ \Xi^{} X, \ \Theta^c X$
ALEPH	NO	NO	NO	$e^+e^- \to \Theta^+ X$
DELPHI	NO			$e^+e^- ightarrow \Sigma^+ K^0 p$
► PHENIX	NO			$AuAu \to \Theta^+ X$
FOCUS			NO	$\gamma A o \Theta^c X$
► BES	NO			$e^+e^- \to J/\Psi \to \Theta^+\overline{\Theta^-}$

- Production rate (e.g. for $\Theta^+(1540)$)

Jin

– "Negative" experiments:

ALEPH: $R_{\Lambda^*(1520)} < 0.1$ BaBar: $R_{\Lambda^*(1520)} < \sim 0.01$ Belle: <0.02</th>HERA-B: $R_{\Lambda^*(1520)} < 0.027 \sim 0.16$ SPHINX: $R_{\Lambda^*(1520)} < 0.02$

Quantitative comparisons difficult. (ZEUS-H1 should be one of the few possible)

Mass, width, angular dist, etc. disfavor charmonium: On the other hand DD* molecule models also have difficulties

Quark-gluon plasma?

But doesn't work sometimes: ←source size compared to hydrodynamic model

Jet-quenching measurements look impressive: Quantitative predictions? QGP summary by Dunlop Summary

RHIC has made major advances in runs 1-3, leading to an appealing picture of bulk, dense, highly interacting matter.

- 1) Extended reach in energy density appears to reach simplifying conditions in central collisions -- ~ideal fluid expansion; approx. local thermal equilibrium.
- Extended reach in p_T gives probes for behavior difficult to access at lower energies – jet quenching; ~constituent quark scaling.
- However: In the absence of a direct "smoking gun" signal of deconfinement revealed by experiment alone, a QGP discovery claim must rest on the comparison with a promising, but still not yet mature, theoretical framework. In this circumstance, clear predictive power with quantitative assessments of theoretical uncertainties are necessary for the present appealing picture to survive as a lasting one.

 J/ψ suppression measurements yet to come

From B -> J/ψ Ks ; other modes are (mostly) consistent

I only saw this in Ellis' summary.

Not much room for NP

Neutrino sector

Neutrino oscillations established

* V.Barger et al. Phys. Rev. Lett. 82 (1999) 2640

[†]E.Lisi et al., Phys. Rev. Lett. 85 (2000) 1166

oscillation favored over other exotic explanations

Combined solar v – KamLAND 2-flavor analysis

Atmospheric and acclerator-based (Θ_{23}) consistent

MiniBooNE should clarify LSDN result (2005?) MINOS start in 2005 CNGS(OPERA) start 2006 T2K, Nova on the horizon

Electro-weak fits: Improved top mass from the Tevatron

How Good is the Global Electroweak Fit?

Teubert

Higgs search at the Tevatron

Tevatron projection is 4-8 fb⁻¹ by 2009

Higgs prospects at the Tevatron

SDSS (Sloan Digital Sky Survey): clustering of galaxies

Strong constraints on cosmological parameters

Which, in turn, puts constraints on, e.g. SUSY In the context of supersymmetric models, the constraint on dark matter severely constrains the parameter space : $\Omega_{\rm CDM} = 0.1126 \begin{array}{c} +0.0161 \\ -0.0181 \end{array}$ $0.03 < \Omega_{\rm CDM} < 0.3$ $\tan\beta=5$ $\tan\beta=50$ 3600 1250 MSUGRA MSUGRA Tan (£ 50) mo mo Tan 6= 5 u > 0 $\Lambda = 0$ u >0 A = 01500 300 Stan LSP Stud LSP 100 100 100 1500 3000 10011/2 500 m1/2 0 M1/2 (GeV) M1/2 (GeV)

Binetruy

Experimental search for dark matter

CDMS limit now contradicts DAMA positive result

Dark matter search at neutrino observatories

Final Remarks

- Many confirmations of Standard Model.
 - QCD becoming ever more precise. Deeper understanding of QCD essential in understanding many other results.
 - CKM description is now becoming very solid; no room for big deviations.
 - Neutrino oscillation also seems solid.
 - EW fits (despite some small deviations) work well -> light Higgs
 - SM + neutrino mixing appears to be a very good description of nature.
- On the other hand, as the precision of B and neutrino sector measurements increase, one is stuck more and more by the large number of apparently random parameters in the SM.
 - SM looks more and more like a description than an explanation.
 - E.g. Why does the quark and neutrino mixings look so different?
 - Several speakers commented on $\Theta_{12} + \Theta_{cabbibo} \approx \pi/4$
- Many reasons to be optimistic
 - B factories
 - Many new neutrino experiments on horizon
 - Strong connection with astroparticle physics and cosmology
 - LHC on the way
 - Linear Collider technology decision taken
 - Ideas for future (>30 years) accelerators (talk by Yokoya)