New Results from ZEUS

Bruce Straub Yale University

- α_s from NC-DIS Jet Substructure
- $\phi(1020)$ production in NC-DIS
- NC and CC-DIS Cross Sections
- NLO QCD Fit to NC DIS Data

Inclusive D*± in DIS

Inclusive Diffraction

Deeply Virtual Compton Scat.

- Contact Interactions
- Leptoquark Search

c-jet Substructure in γp →Dijets

 $D_{s1}^{\pm}(2536)$ Production

Photoproduction of Beauty

• Search for $ep \rightarrow tX$

-irst observation reported at EPS 99 Deeply Virtual Compton Scattering Bruce Straub

 Sensitive to skewed parton distributions (parton correlations)

Interference with QEDC is small.

Kinematic Region:

- $Q^2 > 5 \,\mathrm{GeV}^2$
- 40 GeV < W < 140 GeV
- $E_T^{\gamma} > 3 \,\mathrm{GeV}$
- $-0.6 < \eta_{\gamma} < 1.0$ (γ in barrel)
- e in Rear CAL, $E_e > 10 \text{ GeV}$
- $E_{\text{total}} E_e E_{\gamma} < 0.2 \,\text{GeV}$

537 events pass these cuts

Inclusive Diffraction

$$\frac{d\sigma^{D}_{ep}}{d\beta dQ^{2}dx_{I\!\!P}dt} = \frac{2\pi\alpha^{2}}{\beta Q^{4}} [1 + (1 - y)^{2}] F_{2}^{D(4)}(\beta, Q^{2}, x_{I\!\!P}, t)$$

$$\begin{split} F_2^{D(4)} &= f_{I\!\!P}(x_{I\!\!P},t) \cdot F_2^{D(2)}(\beta,Q^2) \\ f_{I\!\!P} &\propto x_{I\!\!P}^{(1-2\alpha_{I\!\!P}(t))} \end{split}$$

$$\stackrel{e(k)}{\xrightarrow{}} \stackrel{e'(k')}{\xrightarrow{}} \stackrel{p(q)}{\xrightarrow{}} \stackrel{f_{p'}p}{\xrightarrow{}} \stackrel{p}{\xrightarrow{}} \stackrel{f_{p'}p}{\xrightarrow{}} \stackrel{p'}{\xrightarrow{}} \stackrel{p$$

$$\mathcal{L} = 12.8 \, \mathrm{pb}^{-1}.$$

- p in LPS with $x_L > 0.95$.
- No p dissoc. bkgd.
- No bias on hadronic final state X.
- Measure t

New Results from ZEUS

DESY Seminar, 10 July 2001

ശ

New Results from ZEUS

 $\frac{1}{3}$

New Results from ZEUS

c-jet Substructure in $\gamma p \rightarrow Dijets$

1996-2000 e^+ data (106 pb⁻¹)

- ≥ 2 jets with $-1 < \eta^{
 m jet} < 2$
- $E_T^{\text{jet}} > 7,6 \,\text{GeV}$
- $134 \,\mathrm{GeV} < W < 277 \,\mathrm{GeV}$
- Reject NC DIS

New Results from ZEUS

17

NC and CC-DIS Cross Sections

		to DIS Dat	מ			
Jse NLO DGLAP evolution						
vith RT-Variable Flavor Number		$xu_v($	(x) =	<i>u</i> -valence		
scheme.		$xd_v($	(x) =	<i>d</i> -valence		
Data sets:	Fit 5	PDFs: $xS(:$	x) =	total sea		
• 7FUS 06/07 $\rho^+ n$ NC		xg(x)	<u> </u>	gluon		
		$x\Delta($	(x)	$x(ar{d}-ar{u})$		
• BCDMS μp (scaled by 0.98)	<mark>ל</mark>	$p_{1} r^{p_{2}}(1 -$	$r^{p_3(1)}$	$+ n_{1}\sqrt{2}$	+	$n_{z}x$
	(+) mT,	- / w	$- P_4 \vee$	_	Low 1
• INIVIC $\mu p, \mu D$		Some para	meters a	are fixed:		
• E665 up. uD		p_1	p_2	p_3	p_4	p_5
	u_v	Sum Rule	0.5	free	0	free
• CCFR xF_3 ($x > 0.1$)	d_v	Sum Rule	0 <u>.</u> 5	free	0	free
Kinematic Range:	g	Sum Rule	free	free	0	0
• $W^2 > 20 { m GeV}^2$	${\mathfrak O}$	free	free	free	0	free
	\square	free	0 <u>.</u> 5	$p_3(S) + 2$	0	0

 $\alpha_s(M_Z^2)$ either free or set to 0.118

 $6.3 \times 10^{-5} < x < 0.65$

 $2.5 < Q^2 < 3 imes 10^4 \, {
m GeV}^2$

23

24

NLO QCD Fit, *d*-valence

NLO QCD Fit, sea

Bruce Straub

Normalization errors $\sim 50\%$ of correlated systematic error.

Comparison of ZEUS α_S Measurements

95% of simulated experiments have $\Lambda_{fit} > \Lambda_{obs}$. Method: Fit the data to get Λ_{obs} . Find Λ_{limit} for which Curves show excluded models (95% CL). Entire ZEUS data (e^- and e^+) is used.

CI Limits: $\Lambda > 3 - 7 \,\mathrm{TeV}$

Bruce Straub

DESY Seminar, 10 July 2001

$4 \mathrm{TeV}$	LQ Limits: $M/\lambda > 0.3 - 1.$	V	CI Limits: $\Lambda > 3 - 7 \mathrm{Te}$	
1.42	V_1^{μ} -1 -2	2.8 3.7	U6 $+\eta -\eta$	I
1.26	$V_{1/2}^{\mu}$ +1	6.0 5.5	$\eta + \eta + \eta$	
1.10	$V_{1/2} + 1 + 1$	6.4 5.9	U4 $+\eta +\eta$	
1.15	$V_{1/2} + 1$	5.8 - 5.2	U3 $+\eta$ $+\eta$	
1.UU	V ₀ –1	5.8 5.3	U2 $+\eta$ $+\eta$	
U.38	V_0^{**} -1 \tilde{V}_R^{**} 1	4.1 3.6	U1 $+\eta -\eta$	
0.69	V_{0}^{μ} -1	2.6 3.9	$X6 + \eta - \eta + \eta - \eta$	1
>		4.8 4.8	$X5$ $+\eta$ $+\eta$ $+\eta$ $+\eta$	
0.55	S_{1}^{L} +1 +1 + $\frac{1}{2}$	5.6 - 5.6	X4 $+\eta$ $+\eta$ $+\eta$ $+\eta$ $+\eta$	
0.50	$\tilde{S}_{1/2}^{L}$ $-\frac{1}{2}$	4.3 4.2	X3 $+\eta$ $+\eta$ $+\eta$ $+\eta$	
0.69	$S_{1/2}^{R}$ $-\frac{1}{2}$ $-\frac{1}{2}$	4.7 4.7	$X2$ $+\eta$ $+\eta$ $+\eta$ $+\eta$ $+\eta$	
0.91	$S_{1/2}^L$ $-\frac{1}{2}$	4.0 2.7	X1 $+\eta$ $-\eta$ $+\eta$ $-\eta$	
0.31	\tilde{S}_{o}^{R} + $\frac{1}{2}$	3.4 3.3	VA $+\eta$ $-\eta$ $+\eta$ $-\eta$ $+\eta$ $-\eta$ $+\eta$ $-\eta$	I
0.69	$S_{\mathbf{A}}^{\mathbf{X}}$ $+\frac{1}{2}$	5.3 4.6	AA $+\eta$ $-\eta$ $-\eta$ $+\eta$ $+\eta$ $-\eta$ $-\eta$ $+\eta$	
0.75	S^L_{Δ} $+\frac{1}{2}$	7.0 6.5	∇V $+\eta$ $+\eta$ $+\eta$ $+\eta$ $+\eta$ $+\eta$ $+\eta$ $+\eta$	
M_{LQ}/λ_{LQ}	Model a ^{ed} _{LL} a ^{ed} _{LR} a ^{ed} _{RL} a ^{ed} _{RR} a ^{eu} _{LL} a ^{eu} _{RR} a ^{eu} _{RL} a ^{eu} _{RR}	$\Lambda - \Lambda_+$	Model <i>J_{LL} J_{LR} J_{RL} J_{RR} J_{RR} J_{LL} J_{LR} J_{RR} J_{RR} J_{RR}</i>	I
95% CL [TeV]	Coupling structure	95% CL [TeV]	Coupling structure	
	ZEUS (prel.) 1994-2000 $e^{\pm}p$		ZEUS (prel.) 1994-2000 $e^{\pm}p$	1

30

 ν -jet and e-jet mass spectra before and after cut on $\cos \theta^*$ to suppress DIS.

Limits on cross section and λ for F = 2 LQs using 16.7 pb⁻¹ of e^-p data.

DESY Seminar, 10 July 2001

Bruce Straub

32

New Results from ZEUS

Search for $ep \rightarrow tX$

- _eptonic preselection :
- $\bullet P_{\rm k} > 20 \,{
 m GeV}$
- A jet with $E_t^{\text{jet}} > 5 \,\text{GeV}$
- Isolated track with $P_t > 10 \,\mathrm{GeV}$
- $D_{\text{trk}} > 0.5, D_{\text{jet}} > 1.0$

 $\mathcal{L} = 130 \text{ pb}^{-1}$ 17 events selected (10 *e*, 7 μ) Well described by SM simulation (16.4

Final leptonic selection:

expected).

- $E P_Z < 45 \,\mathrm{GeV}$ (e only)
- $P_{t}(\mu + had) > 12 \text{ GeV} (\mu \text{ only})$
- $P_t^X > 40 \,\mathrm{GeV}$
- $D_{\rm trk} > 0.5, D_{\rm jet} > 1.0$

zero events remain. SM expectation =0.96. Efficiency= 5.5%

35

Summary and Conclusions

- Multiple complementary measurements of α_S .
- High precision DIS data.
- Detailed studies of jet shapes
- *D* meson spectroscopy at HERA.
- Many measurements using $> 100 \text{ pb}^{-1}$ data sets.
- Quick overview of detailed analyses.
- Many topics not covered (~ 50 papers submitted).
- Read the papers!

http://www-zeus.desy.de/physics/phch/conf/eps01_paper.html