International Linear Collider
Status and Prospects

Felix Sefkow
DESY - FLC -

DESY seminar, April 19, 2005
LCWS History

(Organized by WWS)

1. Saariselka, Finland - September 9 - 14, 1991
2. Hawaii, USA - April 26 - 30, 1993
3. Morioka, Japan - September 8 - 12, 1995
4. Sitges, Spain - April 28 - May 5, 1999
5. Fermilab, USA - October 24-28, 2000
6. Jeju Island, Korea - August 26-30, 2002
7. Paris, France - April 19-23, 2004
8. Stanford, USA - March 17-23, 2005 ~ 400 participants

Next: Feb /Mar 2006 in India

International activities on LC physics/detector are intensifying:

Every 2 yrs → Every 1.5 yrs → Every <1 yr
Plan

1. Physics directions
2. Organization and timelines
3. Machine issues
4. Detector concepts
5. Detector R&D
1. Physics
New physics nearby

- We expect answers on fundamental questions at the TeV scale
 - Origin of particle masses, electro-weak symmetry breaking, grand unification, dark matter, ...

- For theoretical reasons:
 - SM w/o Higgs is inconsistent above ~ 1.3 TeV
 - Fine-tuning problem if nothing between m_W and m_{Planck} - must be near m_W to be relevant

- For experimental reasons
 - Electroweak precision data want Higgs - or “something in the loops” - below 250 GeV
 - Astrophysics wants a dark matter particle with a few 100 GeV
Higgs discovery

- At the LHC after about 1 year (2008+)
 - Measure some properties
 - Mass
 - Ratios of couplings
- 1 year LHC = 1 day LC
 - LC can discover Higgs-like particle even if rate is 1/100 of SM
Higgs couplings: LHC reach

In principle, at LHC you can get only ratios of BRs — where do these results come from?

To extract absolute coupling values from LHC data, you need assumptions.

Assumptions in these plots:
1. $g_{HWW} \leq 1.05 \times g_{HWW}^{SM}$
2. The observed rates agree with SM predictions.

OK, but:

- $g_{HWW} \leq g_{HWW}^{SM}$ valid only in weakly-interacting models (unitarity)
- The observed rate in WBF might turn out to be significantly below (or even above) SM
- The interesting physics is in exactly this 5% margin (heavy vector bosons, Higgs triplets, ...)

⇒ These assumptions need to be tested before we draw conclusions from measurements.
⇒ This precision is probably not sufficient if looking for new-physics signals in the Higgs sector
Higgs at the ILC

- Measure the Higgs profile
 - Mass and width
 - Quantum numbers
 - Couplings to fermions
 - Couplings to gauge bosons
 - Self coupling

- Prove that the Higgs is the Higgs
 - Establish the Higgs mechanism

- Do Higgs precision physics
 - Deviations from SM, admixtures, SUSY Higgs

\(e.g. \) spin

\[
\begin{align*}
\text{cross section (fb)} & \\
\text{\(\sqrt{s} \) (GeV)} & \\
J=0 & \\
J=1 & \\
J=2 &
\end{align*}
\]
Higgs signature

- Model independent
- Independent of decay mode

Requires excellent tracking

- Provides absolute normalization for decay rates
Higgs trends

- SM and MSSM Higgs are mature fields now
 - Beyond (MS)SM: many open issues under study
- Check anchor processes with full simulations (detector, background)
- Obtain higher order predictions

(from W. Kilian’s summary)
Independent physics case

• Whatever the discoveries at the LHC will be - an e+e- collider with 0.5 - 1TeV energy will be needed to study them

 - Light Higgs: verify the Higgs mechanism
 - Heavy Higgs: ditto, and find out what’s wrong in EW precision data
 - New particles: precise spectroscopy
 - No Higgs, no nothing: This is BSM! find out what is wrong, and measure the indirect effects with max precision

• Case has been worked out and well documented (e.g. TESLA TDR)
• See also answers to ITRP questions: hep-ph/0411159
Physics studies

- No time to report on ongoing work on
 - SUSY - minimal and non-minimal extensions
 - New physics from electro-weak precision measurements
 - Top and QCD
 - Higher order calculations (“Loop Verein”)

- Two relatively young working groups attract increasing attention:
 - LHC LC study group
 - Astrophysics and cosmology connections
LHC ⊕ LC synergy

- Example for **combined interpretation**: Top Yukawa coupling

 absolute top Yukawa coupling from
 \[gg,qq \rightarrow t\bar{t}H (H \rightarrow bb,WW) \text{ (@LHC)} \quad (\text{rate } \sim (g_t g_{b/W})^2) \]

 and

 \[\text{BR}(H \rightarrow bb,WW) \text{ (@LC)} \quad (\text{absolute measurement of } g_{b/W}) \]

At the ILC (alone), need highest energy and combine many channels, e.g.
LHC ⊗ LC synergy

- Example for combined analysis: predict and discover heavy χ^0_4
- Predict χ^0_4 mass from SUSY parameters as determined from lowest chargino and neutralino states at LC
- Know where to look for the edge in the dilepton spectrum at LHC

LHC ILC interplay has become one of the most active fields

See 1st study group report hep-ph/0410364 (477pp)
The data taken recently tell us that the total matter-energy content of the Universe must include invisible dark matter that holds the universe together and a mysterious dark energy that pushes the Universe apart.

5% Visible Matter

95% Dark Energy and Dark Matter
Dark matter

- In many models dark matter is a “thermal relic” WIMP
- WIMPs are neutral, weakly interacting, massive particles
- Once in thermal equilibrium, then frozen out due to expansion of the universe
- Calculable density today
- Naturally appear in EW symmetry breaking models
 - Mass 100 GeV or so
 - Copiously produced at colliders

(from M. Peskin’s talk)
Dark matter interpretation

- LHC will see DM candidate as jets + missing energy, LSP = χ_1^0 ??
- To claim dark matter discovery, need to establish model; annihilation cross section to precisely calculate relic density, match with cosmology

E.g. mSUGRA: Depends on slepton mass

![Graph showing Dark Matter interpretations with LHC, ILC, and Planck data points]

From J. Feng's talk
Cosmic connection

this is a special time in particle physics

- urgency: provocative discoveries lead to urgent questions
- connections: questions appear to be related in fundamental but mysterious ways -> big ideas are in play
- tools: we have the experimental tools, technologies and strategies needed to tackle these questions

conclusion: we are seeing a scientific revolution in the making

J.Lykken, quoted from J.Dorfan
2. Organization & Timelines
ILC Parameters

“Scope document”
(http://www.fnal.gov/directorate/icfa/LC_parameters.pdf)

- **1st stage**
 - Energy 200→500 GeV, scannable
 - 500 fb⁻¹ in first 4 years
 - with option of x2 lum. in additional 2 years

- **2nd stage**
 - Energy upgrade to ~1TeV
 - ~1000 fb⁻¹ in 3-4 years

- **Options**
 - γ γ, γe⁻, e⁻e⁻, Giga-Z

- **2 IRs for 2 experiments**

- **Operating simultaneously with LHC**
 (to start ~2015 : not in the scope document)
International Consensus...

- Up to 2002, ACFA, ECFA, HEPAP reached the common conclusion that the next accelerator should be an electron-positron linear collider with an initial energy of 500 GeV, running in parallel with LHC, and later upgradeable to higher energies.

- 2003/11, US DOE Office of Science Future Facilities Plan: LC is first priority mid-term new facility for all US Office of Science

- 2004/1, ACFA, ECFA, HEPAP chairs reaffirmed their community’s priorities for a 500 GeV linear collider operated in parallel with the LHC

- 2004/1, OECD Science Ministerial Statement endorsed the plan for global collaborative development of a linear collider.

- 2004/2, ICFA reaffirmed that the highest priority for a new machine for particle physics is a linear electron-positron collider with an initial energy of 500 GeV, extendible up to about 1 TeV, with a significant period of concurrent running with the LHC

...is overwhelming
Important development past year

ITRP
(International Technology Recommendation Panel)
Chair : Barry Barish

Set out to recommend LC technology between “warm” and “cold”.
After 6 months of intensive work…
ITRP Executive Summary
(excerpts)

Aug 19, 2004

- We recommend that LC be based on superconducting RF technology.
 - ... we are recommending a technology not a design. We expect that the final design be developed by a team drawn from the combined warm and cold linear collider communities...

Things are starting to roll

- The name is officially decided to be **ILC** (International Linear Collider)
- **GDE** (Global Design Effort) - the first stage of **GDI** (Global Design Initiative) - is being formed (see following talks)
The Birth of the GDE

Barry Barish
TESLA Collab Mtg
31-March-05
Barry Barish GDE director

First statements on structure of GDE

• No host institute: GDE as virtual lab, truly international, distributed effort

• 3 regional directors to follow (Snowmass)

• 3 (regional) cost engineers
 - Cost awareness from the beginning

• 30 experts form distributed “core team”
 - Not regionally or politically balanced
First statements on timeline of GDE

- **Snowmass (2\(^{nd}\) ILC meeting) is important**
 - Fix ILC **baseline configuration**
 - Yet, keep open for improvements

- **CDR target date: end of 2006**
 - But: with **price tag**
 - Site dependent: **sample sites**
 - Understand geological / political constraints

- **TDR in 2008**
Tasks for LC Physics/Detector Studies

- Inputs to Machine Design (GDE)
 - Options ($\gamma \gamma$, γe^-, $e^- e^-$, Giga-Z...) (K. Hagiwara)
 - Number of IRs: A task force being formed
 - MDI issues including: (T. Tauchi)
 - Crossing angle
 - Constraints from detector designs

- Design and Build Detectors
 - Establish detector concepts (T. Behnke)
 - Perform necessary R&Ds (W. Lohman)
 - Study physics/detector bench marks (T. Barklow, M. Battaglia)

- Sharpen LC Physics Cases
 - New Physics Models (S. Dimopolous)
 - LHC and LC (G. Weiglein)
 - Cosmology and LC (J. Feng)
 - Outreach (K. Buesser)

(): plenary talks this workshop.
Panels installed by WW Study

- **R&D panel**
 - 3 members from each region, balanced over expertise. Launched at this workshop.
 - C. Damerell, J.-C. Brient, W. Lohmann
 - H.J. Kim, T. Takeshita, Y. Sugimoto
 - D. Peterson, R. Frey, H. Weerts
 - Register the detector R&Ds (incl. MDI)
 - Evaluate them wrt detector concepts (document it ~Aug 2005)
 - Coordinate with regional review processes

- **MDI panel**
 - Liase with machine efforts (i.e. GDE)
 - Existing LCWS/WWS leadership of MDI acts as this panel for now
 - (P. Bambade, T. Tauchi, M. Woods)

- **Costing panel**
 - To be formed in time for serious work by this summer
Statement of Funding Agency (FALC) Mtg
17-Sept-04 @ CERN

Attendees: Son (Korea); Yamauchi (Japan); Koepke (Germany); Aymar (CERN); Iarocci (CERN Council); Ogawa (Japan); Kim (Korea); Turner (NSF - US); Trischuk (Canada); Halliday (PPARC); Staffin (DoE - US); Gurtu (India)

Guests: Barish (ITRP); Witherell (Fermilab Director)

"The Funding Agencies praise the clear choice by ICFA. This recommendation will lead to focusing of the global R&D effort for the linear collider and the Funding Agencies look forward to assisting in this process.

The Funding Agencies see this recommendation to use superconducting rf technology as a critical step in moving forward to the design of a linear collider."

FALC is setting up a working group to keep a close liaison with the Global Design Initiative with regard to funding resources.

The cooperative engagement of the Funding Agencies on organization, technology choice, timetable is a very strong signal and encouragement.

B.Barish at TTC meeting
3. Machine
Towards the ILC Baseline Design

Decisions to be Made!
Two new members for the "TESLA Technology Collaboration"

KEK und SLAC now joined in

During its meeting last week at DESY the TESLA Collaboration decided to change its name into TESLA Technology Collaboration. At the same time two important new members joined the Collaboration: The Japanese Center for High Energy Physics KEK and the Stanford Linear Accelerator Center SLAC from the USA.
New TESLA test facilities

STF underground tunnel plane view

Cryogenic System (from AR-East)

Beam Line in the tunnel

DCgun (later RFgun)

17m (12 cavities) Cryomodule x 3

5m x 3.85m x 93.5m Tunnel

Tunnel underground
Damping Rings

1. Emittance Goals
 - 1 pm

2. Dynamic Aperture
 - Lattice design wiggler

3. Instabilities (collective effects)
 - Electron cloud
 - Fast ion
 - ...

4. Kicker Technology

5. Circumference

6. Cost

7. Commissioning

higher I_{av}

smaller circumference (faster kicker)

bunch train compression

300km \rightarrow <20km
DR Design Approaches: Example #1, the TESLA TDR lattice

5 GeV, 17 km lattice (arcs 1 km each, straights 15 km total).
Bunches spaced by 20 ns, injected and extracted individually.
Positron damping ring requires 440 m of wiggler to achieve damping time of 27 ms.

Strengths:
- Relatively small amount of extra tunnel required.
- Large circumference reduces average current, and helps mitigate some instabilities.
- Flexibility in modes of operation (e.g. could double number of bunches)

Weaknesses:
- Large space-charge tune shift needs to be corrected using coupling-bumps.
- Sensitive to stray magnetic fields.

see A. Wolski’s talk: http://lcdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf
DR Design Approaches: Example #1, the TESLA TDR lattice

5 GeV, 17 km lattice (six-fold symmetry).
Injection/extraction scheme uses 6 ns rise-time, 60 ns fall-time kicker.

Lattice documented in FERMILAB-TM-2272-AD-TD
http://www.hep.uiuc.edu/home/g-gollin/linearCollider/Fermilab_damping_ring_report.pdf

Strengths:
- Relatively small circumference reduces space-charge effects.
- Reduced amount of wiggler needed to achieve required damping rate.
- Injection/extraction scheme allows use of slow fall-time kicker.

Weaknesses:
- Higher average current makes electron-cloud and ion effects more difficult.

see A. Wolski’s talk: http://lcdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf

Nick Walker
LCWS 2005 – Stanford University 18.3.2005
DR Design Approaches: Example #1, the TESLA TDR lattice

5 GeV, 17 km lattice (bayfront design).

Bunches separated by 1 m
Positron direction to the left
Injection/extract
Lattice doubles at http://lcdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf

DR Design Approaches: Example #2, the FNAL 6 km lattice

5 GeV, 6 km lattice (kinked design).

Injection/extract
Lattice doubles at http://www.hep.fsu.edu

DR Design Approaches: Example #3, the KEK 3 km lattice

5 GeV, 3.2 km lattice (racetrack design).

Lattice layout and optical functions in KEK 3 km damping ring,
S. Kuroda and J. Urakawa (KEK)

see A. Wolski’s talk: http://lcdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf
ILC WG4 “Strawman” Layout of BDS with 20 mrad and 2 mrad IRs logically complete
Interface to CF / Engineering Beginning

Overall

IR1

Beam dumps??

IR2

IR2
4. Detector Concepts
Detector challenge

The starting points (well known by now)

- Precision tracking
- Precision vertexing
- Particle flow for overall event reconstruction

See talk by Tim Barklow this morning

30% \sqrt{E}

Charm tagging

Higgs Couplings to fermions:

Higgs recoil mass

10x better than LEP
Particle flow detector

- Optimize overall detector resolution: reconstruct each particle individually

- Particle separation demands:
 - Large radius and length
 - Large magnetic field
 - High granularity
 - Compact calorimeter (R_M)
Detector concepts

- Sizes

SiD

LDC

GLD

5 m

- B = 5T
- Si Tracker
- SiW ECAL
- ... different HCAL options...

- 4T
- Gasous Tracker (+Si?)
- SiW ECAL
- Gasous Tracker

- 3T
- Hybrid or Scint ECAL
Detector sizes

CMS

GLD

Main Tracker
EM Calorimeter
H Calorimeter
Cryostat
Iron Yoke / Muon System
Open issues

Randomly picking a few typical examples:

- Beam crossing angle
- Tracker: pattern recognition, robustness, calibration and alignment
- ECAL: size - compactness - granularity - B field
- ECAL - HCAL transition
- HCAL granularity (vs. resolution)
Full Simulation

- Geant4, StdHep and LCIO* are common features
- Each trying to be generic with different approach → different ways to define geometries

*DESY
Organization

Detector concept groups are forming

SiD: Weerts, Jaros, Aikara, Karioakis

LDC: Battaglia, Behnke, Karlen, Videau,
2 Asian contacts Y. Sugimoto, NN

GLD: Park, Yamamoto, EU contact, American contact
 R. Settles, M. Thompson, G. Wilson, M. Ronan

All concept studies attempt to have an international convener-ship and base
Concepts and R&D
5. Detector R&D
Packed agendas

- 36 talks on calorimetry and muons (16 at LC99 Sitges)
- 32 talks on tracking and vertexing (13 at LC99 Sitges)
- 25 talks on simulation and reconstruction
- 20 talks on machine detector interface
- 15 talks on DAQ
- 7 talks on testbeam
Very Forward Detectors

- Measurement of the Luminosity with precision (<10^{-3}) using Bhabha scattering
- Detection of Electrons and Photons at very low angle – extend hermeticity
- Fast Beam Diagnostics

Beamstrahlung Depositions: 20 MGy/year
Rad. hard sensors e.g. Diamond/W
BeamCal

LumiCal: \(26 < \theta < 82\) mrad
BeamCal: \(4 < \theta < 28\) mrad
PhotoCal: \(100 < \theta < 400\) \(\mu\)rad

LumCal sandwich
BeamCal

Beam test of diamond sensors

300 cm
Vertex detector

Technologies

CAP
CPCCD
DEPFET
FAPS
FPCCD
HAPS
ISIS – edge readout
ISIS – distributed readout
MAPS – transverse readout
MAPS-digital
Sol
Macro-pixel/Micro-pixel sandwich

(Probably incomplete!)

Thinner
Faster
Closer than SLD
Revolver ISIS

- New idea: combine CCD and active pixel
- ISIS: In situ image storage
- 20 px in-situ storage CCD
- Read-out (charge to voltage) in quiet period between bunch trains
 - Reduced EMI sensitivity
Revolver ISIS

- New idea: combine CCD and active pixel
- ISIS: In situ image storage
- 20 px in situ storage CCD
- Read-out (c voltage) in quiet period between bunch trains
 - Reduced EMI sensitivity

Idea by D. Burt and R. Bell (E2V)
Beam tests at DESY

Transistor in every pixel

3 x 3 mm² Scintillator
DEPFET System
Telescope-Module
Scintillator
Tracking Detector: TPCs

Carleton, Aachen, Desy (not shown) for B=0 studies with laser or cosmics

Desy, Victoria, Saclay (fit in 2-5T magnets)

Saday, Orsay, Berkeley

Saclay 2 T Magnet

Micosensors TPC

University of Victoria, DESY

DESY 5 T Magnet

800 mm

Felix Sefkow
April 19, 2005
Gas-Amplification Systems: Wires & MPGDs

GEM: Two copper foils separated by kapton, multiplication takes place in holes, uses 2 or 3 stages

Micromegas: Micromesh sustained by 50µm pillars, multiplication between anode and mesh, one stage

- $S_1/S_2 \sim E_{\text{amplify}} / E_{\text{drift}}$
- $P \sim 140 \, \mu m$
- $D \sim 60 \, \mu m$
Understand GEM TPCs

- (and Micromegas)
- Tests in magnetic fields
 - Results from customers from all regions in DESY R&D magnet
- Pixel TPC

TPC Simulation

Independent from simulation packages
Simulation in three steps:
- Primary ionisation (blue)
- Drifting (red)
- Amplification with GEMs

Studies of:
E & B fields, ion backdrift, pad geometry etc.
First results:
Agreement with TPC prototype

- Next: larger system(!)
- Electronics
 - DAQ kick-started since bunch structure known
Calorimeter R&D

- **ECAL**: main option Si W
 - Demonstrate feasibility of ultra-compact systems
 - **CALICE** test beam at DESY
 - SLAC Oregon test wafers
 - Korean groups testbeam at CERN

- **HCAL**: gaseous or scintillator,
 - Understand hadron showers
 - Gaseous: RPC and GEM R&D
 - Scintillator: new possibilities with small Geiger mode photo-sensors ("SiPMs")
 - Prototype construction at DESY

- **Photodector R&D**
 - E.g. Hamamatsu SiPMs
Scintillator HCAL

- Czech, France, Germany, Russia, UK, US
- Technical support from H1, ZEUS, FEB, ZE,...

$SiPM: \quad 1000 \text{ px on } 1 \text{ mm}^2$

$x \times 8000$
CALICE Setup V-Trial at FNAL MTBF

Tail Catcher
ECAL
HCAL
Electronic Racks

Beam

K. Gadow (DESY)
Summary

• Physics: “The scientific imperative is compelling.” (Dorfan)

• Organization and timelines: “Things start to roll.” (Yamamoto)

• Machine: “Working at furious pace towards CDR baseline configuration.” (Markiewicz)

• Detector: a challenge. Conceptual design choices to be made on “ambitious timescale” (Behnke). R&D on new technologies “critical” (White).

• DESY: a highly visible player in all ILC aspects.