Astroparticle Physics and the ILC

Manuel Drees

Bonn University

1) Introduction: A brief history of the universe

- 1) Introduction: A brief history of the universe
- 2) Dark Energy

- 1) Introduction: A brief history of the universe
- 2) Dark Energy
- 3) Baryogenesis

- 1) Introduction: A brief history of the universe
- 2) Dark Energy
- 3) Baryogenesis
- 4) Dark Matter

- 1) Introduction: A brief history of the universe
- 2) Dark Energy
- 3) Baryogenesis
- 4) Dark Matter
- 5) Summary

Before the Big Bang: Speculations about pre—BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- Before the Big Bang: Speculations about pre—BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$

- Before the Big Bang: Speculations about pre—BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation

- Before the Big Bang: Speculations about pre-BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations:
 confirmed by CMB observations (WMAP, ...)

- Before the Big Bang: Speculations about pre—BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations:
 confirmed by CMB observations (WMAP, ...)
 - Scalar fields can get large vevs due to these fluctuations

- Before the Big Bang: Speculations about pre—BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
- Inflation: Scale factor ("radius") $R \longrightarrow e^N R$, $N \ge 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, ...)
 - Scalar fields can get large vevs due to these fluctuations
 - No known connections to collider physics

Reheating: (Re-)populates Universe with particles.

Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \ge 1$ MeV (BBN)

- Reheating: (Re-)populates Universe with particles. Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \geq 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field

- Reheating: (Re-)populates Universe with particles. Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \ge 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - No direct connections to collider physics

- Reheating: (Re-)populates Universe with particles.

 Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \ge 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - No direct connections to collider physics
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (→ RHIC, LHC)

- Reheating: (Re-)populates Universe with particles. Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \ge 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - No direct connections to collider physics
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (→ RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation

- Reheating: (Re-)populates Universe with particles. Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \geq 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - No direct connections to collider physics
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (→ RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation
 - Many models exist

- Reheating: (Re-)populates Universe with particles. Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \ge 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - No direct connections to collider physics
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (→ RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures

- Reheating: (Re-)populates Universe with particles.

 Re-heat temperature $T_{\rm R}$ not known: $T_{\rm R} \ge 1$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - No direct connections to collider physics
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (→ RHIC, LHC)
- Baryogenesis: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Some models make predictions for colliders!

Creation of <u>Dark Matter</u>: Happened sometime after end of inflation

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!
- Electroweak Phase Transition: Happened at $T=T_{\rm EW}\simeq 100$ GeV, if $T_{\rm R}>T_{\rm EW}$

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!
- Electroweak Phase Transition: Happened at $T = T_{\rm EW} \simeq 100$ GeV, if $T_{\rm R} > T_{\rm EW}$
 - May be related to baryogenesis

- Creation of <u>Dark Matter</u>: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!
- Electroweak Phase Transition: Happened at $T = T_{\rm EW} \simeq 100$ GeV, if $T_{\rm R} > T_{\rm EW}$
 - May be related to baryogenesis
 - May have some connection to collider physics (sphalerons)

QCD phase transition: Happened at

$$T=T_{\mathrm{QCD}}\simeq170$$
 MeV, if $T_{\mathrm{R}}>T_{\mathrm{QCD}}$

QCD phase transition: Happened at

$$T=T_{\mathrm{QCD}}\simeq 170$$
 MeV, if $T_{\mathrm{R}}>T_{\mathrm{QCD}}$

 Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)

- QCD phase transition: Happened at
 - $T=T_{\mathrm{QCD}}\simeq170$ MeV, if $T_{\mathrm{R}}>T_{\mathrm{QCD}}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1 \text{ MeV}$

- QCD phase transition: Happened at $T=T_{\rm QCD}\simeq 170$ MeV, if $T_{\rm R}>T_{\rm QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles

- QCD phase transition: Happened at $T=T_{\rm QCD}\simeq 170$ MeV, if $T_{\rm R}>T_{\rm QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1 \text{ MeV}$
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles
 - Sets lower bound on $T_{\rm R}$, if standard BBN is essentially correct

- QCD phase transition: Happened at $T = T_{\rm QCD} \simeq 170$ MeV, if $T_{\rm R} > T_{\rm QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles
 - ullet Sets lower bound on $T_{
 m R}$, if standard BBN is essentially correct
- Matter–Radiation Equilibrium: Happened at $T \simeq 3$ eV.

- QCD phase transition: Happened at $T = T_{\rm QCD} \simeq 170$ MeV, if $T_{\rm R} > T_{\rm QCD}$
 - Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)
- Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1 \text{ MeV}$
 - Constrains many extensions of SM, if $T_{\rm R}$ was sufficiently high to create new particles
 - ullet Sets lower bound on $T_{
 m R}$, if standard BBN is essentially correct
- Matter–Radiation Equilibrium: Happened at $T \simeq 3$ eV.
 - Energy density of the Universe begins to be dominated by (dark) matter

Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \; \mathrm{eV}$

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \; \text{eV}$
 - "Last scattering" of CMB photons

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \text{ eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \; \text{eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \ \mathrm{eV})$.

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \; \text{eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \ \mathrm{eV})$.
 - Nobody knows when (or if) Dark Energy was created

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \; \text{eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \ \mathrm{eV})$.
 - Nobody knows when (or if) Dark Energy was created
 - If Dark Energy \simeq const: Plays no role for $T>0.1~{\rm eV}$

- Decoupling of Matter and Radiation: Happened at $T \simeq 0.3 \; {\rm eV}$
 - "Last scattering" of CMB photons
 - Visible structures (galaxies etc.) start to form
- Equilibrium of Matter and Dark Energy: Probably happened at redshift $z \simeq 1 \ (T \simeq 6 \cdot 10^{-4} \ \mathrm{eV})$.
 - Nobody knows when (or if) Dark Energy was created
 - If Dark Energy \simeq const: Plays no role for $T>0.1~{\rm eV}$
 - In models with dynamical Dark Energy ("quintessence"): Can affect dynamics of BBN, creation of Dark Matter, ...

2 Dark Energy

Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!

2 Dark Energy

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: No connection to collider physics

2 Dark Energy

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!
- In 4 dimensions: No connection to collider physics
- In models with extra dimensions: Connections to collider physics may exist (radion—Higgs mixing; spectrum of KK states), but no example is known (to me)

Reminder: Sakharov conditions: Need

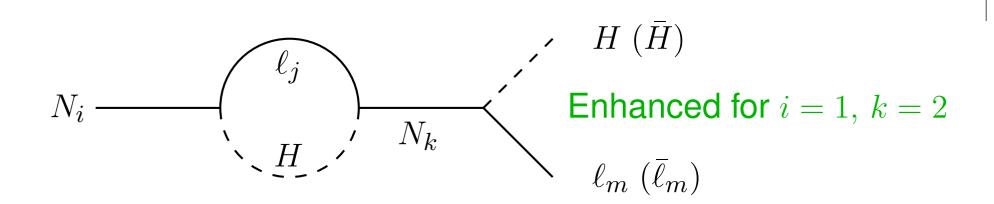
- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries

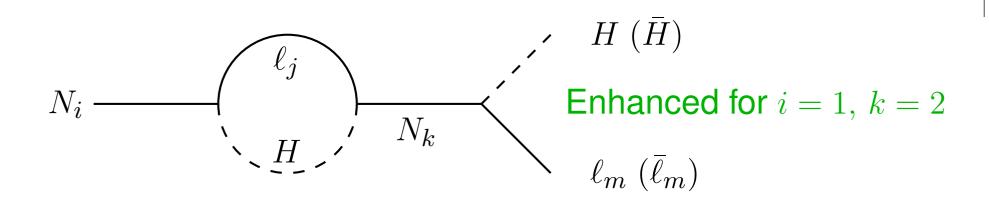
- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number

- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number
 - ullet Deviation from thermal equilibrium (or CPT violation)

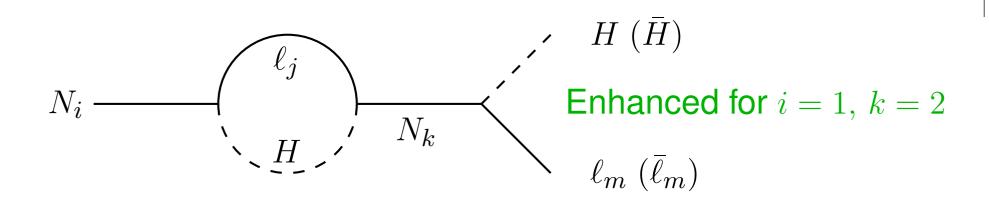
- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number
 - Deviation from thermal equilibrium (or CPT violation)
- Many models work at very high temperatures (GUT baryogenesis; most leptogenesis; most Affleck–Dine): Have no connection to collider physics

- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number
 - Deviation from thermal equilibrium (or CPT violation)
- Many models work at very high temperatures (GUT baryogenesis; most leptogenesis; most Affleck–Dine): Have no connection to collider physics
- Some models work at rather low temperature: can be tested at colliders! Will discuss two such models.

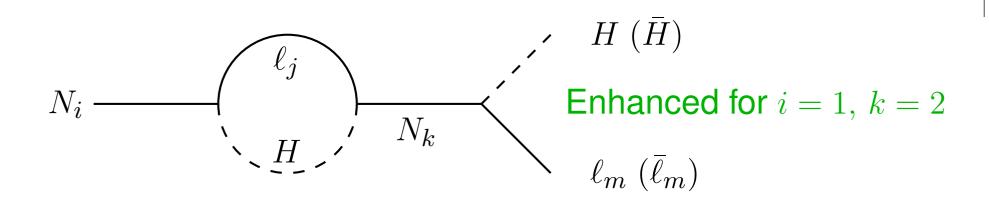

Basic idea of leptogenesis:


- Basic idea of leptogenesis:
 - Out—of—equilibrium decay of heavy "right—handed" neutrinos N_i creates lepton asymmetry

- Basic idea of leptogenesis:
 - Out—of—equilibrium decay of heavy "right—handed" neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions


- Basic idea of leptogenesis:
 - Out—of—equilibrium decay of heavy "right—handed" neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions
- ullet Standard thermal leptogensis with hierarchical heavy neutrinos reqires $T_{
 m R} \geq M_1 \geq 10^8$ GeV: Not testable at colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al. 2004

- Basic idea of leptogenesis:
 - Out—of—equilibrium decay of heavy "right—handed" neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions
- Standard thermal leptogensis with hierarchical heavy neutrinos reqires $T_{\rm R} \geq M_1 \geq 10^8$ GeV: Not testable at colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al. 2004
- If $M_2-M_1\ll M_1$: effective CP violation enhanced: Can have $M_1\simeq \text{TeV}!$ Pilaftsis 1997/9; Pilaftsis & Underwood 2004



• N_i only couple to Higgs boson(s): productions at colliders not easy!

- N_i only couple to Higgs boson(s): productions at colliders not easy!
- Constrain via precision measurements of Higgs properties?

- N_i only couple to Higgs boson(s): productions at colliders not easy!
- Constrain via precision measurements of Higgs properties?
- Other scenarios with low-scale leptogenesis: Grossman, Kashti, Nir, Roulet 2004; Hambye et al. 2003; Raidal, Strumia, Turzynski 2004

Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.

- Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons

- **Basic idea:** Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equlibrium: Elw. phase transition was strongly
 1st order

- **Basic idea:** Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equlibrium: Elw. phase transition was strongly
 1st order
 - CP violation: in bubble wall

- Basic idea: Bubbles of true vacuum form in phase of exact SU(2). Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equlibrium: Elw. phase transition was strongly
 1st order
 - CP violation: in bubble wall
- Does not work in SM: cross—over (no phase transition) for $m_H \gtrsim 60$ GeV!

Mechanism can work in MSSM! Requirements:

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1, |M_2|, |\mu| \lesssim 150 \text{ GeV}$

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1, |M_2|, |\mu| \lesssim 150 \text{ GeV}$
- Remains to be checked:

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1, |M_2|, |\mu| \lesssim 150 \text{ GeV}$
- Remains to be checked:
 - Determination of $\theta_{\tilde{t}}$ in presence of CP violation

- Mechanism can work in MSSM! Requirements:
 - Light Higgs: $m_h \lesssim 120 \text{ GeV}$
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$
 - Little $\tilde{t}_L \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1, |M_2|, |\mu| \lesssim 150 \text{ GeV}$
- Remains to be checked:
 - Determination of $\theta_{\tilde{t}}$ in presence of CP violation
 - Determination of ϕ_{μ} in relevant region of parameter space

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

• Galactic rotation curves imply $\Omega_{\rm DM}h^2 \geq 0.05$.

 Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

• Galactic rotation curves imply $\Omega_{\rm DM}h^2 \geq 0.05$.

 Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

Models of structure formation, X ray temperature of clusters of galaxies, . . .

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

• Galactic rotation curves imply $\Omega_{\rm DM}h^2 \geq 0.05$.

 Ω : Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

- Models of structure formation, X ray temperature of clusters of galaxies, . . .
- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{\rm DM}h^2=0.111\pm0.009$ Bennet et al., astro-ph/0302207

Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_{\chi}(T_f)\langle v\sigma(\chi\chi\to\text{any})\rangle = H(T_f)$$

 n_{χ} : χ number density $\propto e^{-m_{\chi}/T}$

v: Relative velocity

(...): Thermal average

H: Hubble parameter; in standard cosmology $\sim T^2/M_{\rm Planck}$

Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_{\chi}(T_f)\langle v\sigma(\chi\chi\to\text{any})\rangle = H(T_f)$$

 n_{χ} : χ number density $\propto e^{-m_{\chi}/T}$

v: Relative velocity

(...): Thermal average

H: Hubble parameter; in standard cosmology $\sim T^2/M_{\rm Planck}$

Gives average relic mass density

$$\Omega_{\chi} \propto \frac{1}{\langle v\sigma(\chi\chi\to {\rm any})\rangle}$$

Gives roughly right result for weak cross section!

Assumptions

• χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders

Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders

Assumptions

- χ is effectively stable, $\tau_{\chi} \gg \tau_{\rm U}$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- ullet at time of χ decoupling is known: partly testable at colliders

Conditions for successful DM candidate:

■ Must be stable $\Rightarrow \chi = \mathsf{LSP}$ and R-parity is conserved (if LSP in visible sector)

Conditions for successful DM candidate:

- Must be stable ⇒ χ = LSP and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral

Conditions for successful DM candidate:

- Must be stable ⇒ χ = LSP and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral
- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = \mathsf{LSP}$ and R-parity is conserved (if LSP in visible sector)
- Exotic isotope searches $\Rightarrow \chi$ must be neutral
- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is ...

$$\chi = \tilde{\chi}_1^0$$

(or in hidden sector)

$ilde{\chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

$$\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow SM \text{ particles})$$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

$ilde{\chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

$$\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow SM \text{ particles})$$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\cos\theta_{W} & 0 & -\mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & -\mu & 0 \end{pmatrix}$$

$\tilde{\chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

$$\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow SM \text{ particles})$$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

$$\mathcal{M}_0 = \begin{pmatrix} M_1 & 0 & -M_Z \cos\beta \sin\theta_W & M_Z \sin\beta \sin\theta_W \\ 0 & M_2 & M_Z \cos\beta \cos\theta_W & -M_Z \sin\beta \cos\theta_W \\ -M_Z \cos\beta \sin\theta_W & M_Z \cos\beta \cos\theta_W & 0 & -\mu \\ M_Z \sin\beta \sin\theta_W & -M_Z \sin\beta \cos\theta_W & -\mu & 0 \end{pmatrix}$$

 \Longrightarrow Can determine decomposition of $\tilde{\chi}_1^0$ by studying $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$.

$ilde{\chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

$$\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \longrightarrow SM \text{ particles})$$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

$$\mathcal{M}_{0} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\cos\theta_{W} & 0 & -\mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & -\mu & 0 \end{pmatrix}$$

 \Longrightarrow Can determine decomposition of $\tilde{\chi}_1^0$ by studying $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$. Well studied in the MSSM, but not much is known about extensions (e.g. NMSSM)

• $m_{\tilde{f}_L},\,m_{\tilde{f}_R},\, heta_{\tilde{f}}$: Needed for $ilde{\chi}_1^0 ilde{\chi}_1^0 o far{f}$

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f\bar{f}$
- m_h , m_H , m_A , α , $\tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f \bar{f}$, VV, $V\phi$, $\phi\phi$ (V: Massive gauge boson; ϕ : Higgs boson).

- $m_{\tilde{f}_L},\,m_{\tilde{f}_R},\,\theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0\tilde{\chi}_1^0 \to f\bar{f}$
- m_h , m_H , m_A , α , $\tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f \bar{f}$, VV, $V\phi$, $\phi\phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient

- $m_{\tilde{f}_L},\,m_{\tilde{f}_R},\,\theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0\tilde{\chi}_1^0 \to f\bar{f}$
- m_h , m_H , m_A , α , $\tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f \bar{f}$, VV, $V\phi$, $\phi\phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient
- If coannihilation is important: final answer depends exponentially on mass difference

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f \bar{f}$
- m_h , m_H , m_A , α , $\tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to f \bar{f}$, VV, $V\phi$, $\phi\phi$ (V: Massive gauge boson; ϕ : Higgs boson).
- For many masses: lower bounds may be sufficient
- If coannihilation is important: final answer depends exponentially on mass difference
- Parameters in Higgs and squark sector are also needed to predict $\tilde{\chi}_1^0$ detection rate, i.e. $\sigma(\tilde{\chi}_1^0 N \to \tilde{\chi}_1^0 N)$

w./ A. Djouadi, J.-L. Kneur, P. Slavich

Parameter space is constrained by:

• Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

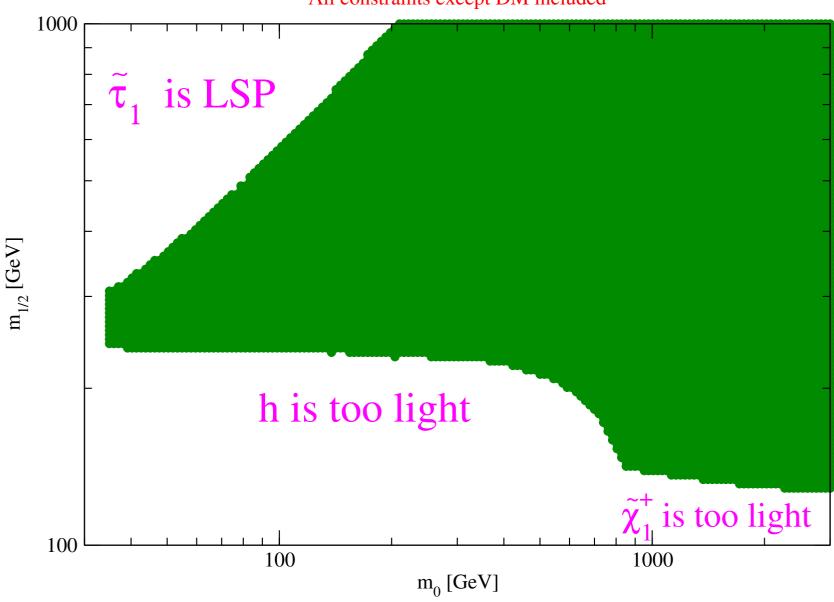
w./ A. Djouadi, J.-L. Kneur, P. Slavich

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)

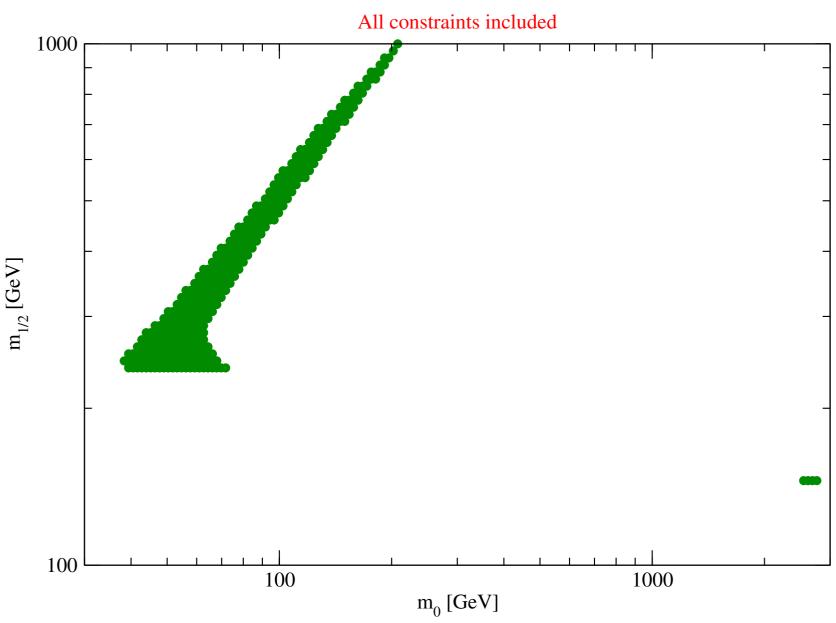
w./ A. Djouadi, J.-L. Kneur, P. Slavich

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- **●** Brookhaven g_{μ} − 2 measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction

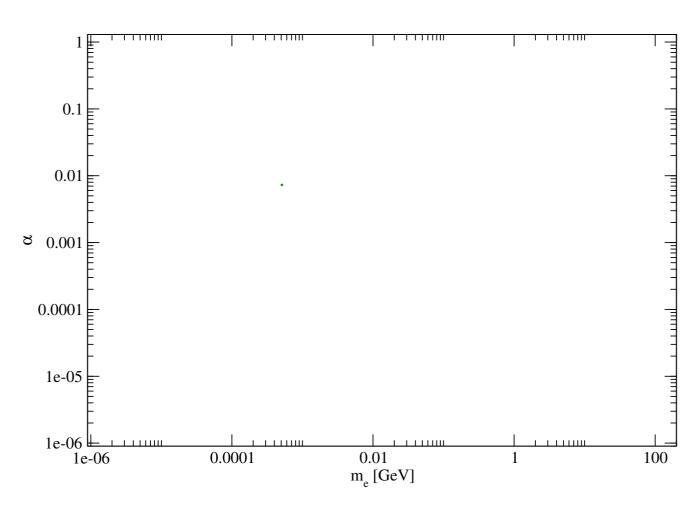
w./ A. Djouadi, J.-L. Kneur, P. Slavich

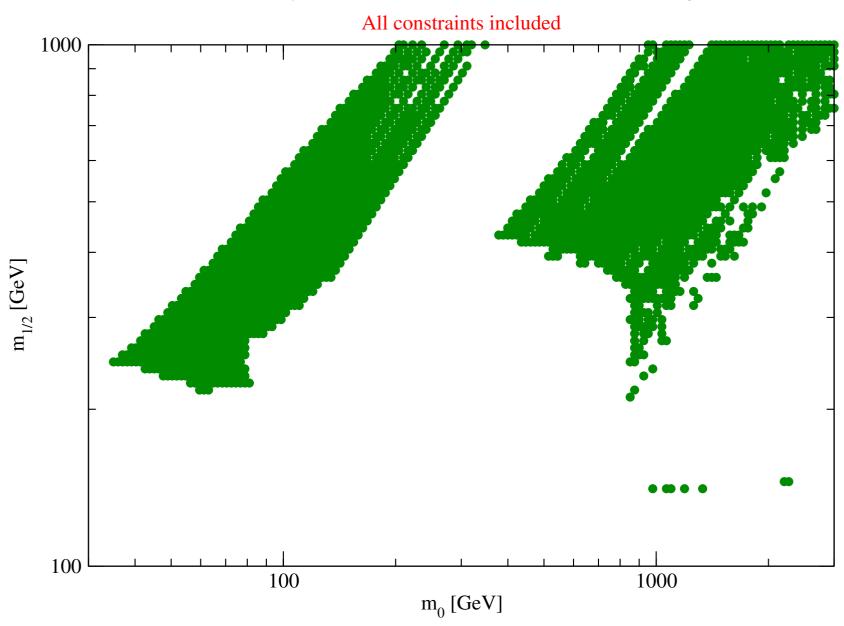

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- **●** Brookhaven g_{μ} − 2 measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
- Radiative b decays (BELLE, ...): Take $2.65 \cdot 10^{-4} \le B(b \to s\gamma) \le 4.45 \cdot 10^{-4}$

w./ A. Djouadi, J.-L. Kneur, P. Slavich


- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
- Higgs searches, in particular light CP-even Higgs search at LEP (parameterized)
- **●** Brookhaven g_{μ} − 2 measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
- Radiative b decays (BELLE, ...): Take $2.65 \cdot 10^{-4} \le B(b \to s\gamma) \le 4.45 \cdot 10^{-4}$
- Simple CCB constraints (at weak scale only)

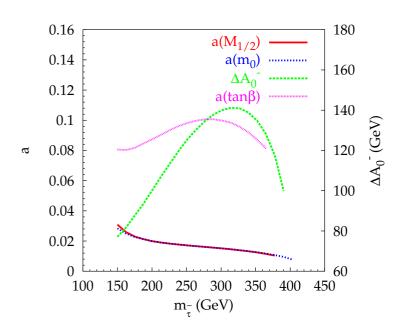
mSUGRA, $m_t = 178 \text{ GeV}$, $\tan \beta = 10$, $\mu > 0$, $A_0 = 0$

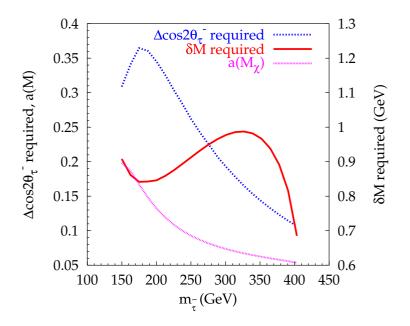

mSUGRA, $m_t = 178 \text{ GeV}$, $\tan \beta = 10$, $\mu > 0$, $A_0 = 0$


Is the apparently small size of the allowed parameter parameter space a problem? Not necessarily ...

Is the apparently small size of the allowed parameter parameter space a problem? Not necessarily ...

QED parameter space




mSUGRA, $m_t = 178 \text{ GeV}$, $\tan\beta = 10$, $\mu>0$, A_0 scanned

Example: $\tilde{\tau}$ co–ann. region in mSUGRA Allanach et al. 2004

Precision with which one has to measure parameters in order to predict thermal $\tilde{\chi}_1^0$ relic density with WMAP accuracy:

Beyond mSUGRA

The predicted Dark Matter density can be altered by modifying the SUSY model and/or by modifying the cosmological model.

Reducing $\Omega_{\tilde{\chi}_1^0}$ by changing the SUSY model:

Dial up co-annihilation

Beyond mSUGRA

The predicted Dark Matter density can be altered by modifying the SUSY model and/or by modifying the cosmological model.

Reducing $\Omega_{\tilde{\chi}_1^0}$ by changing the SUSY model:

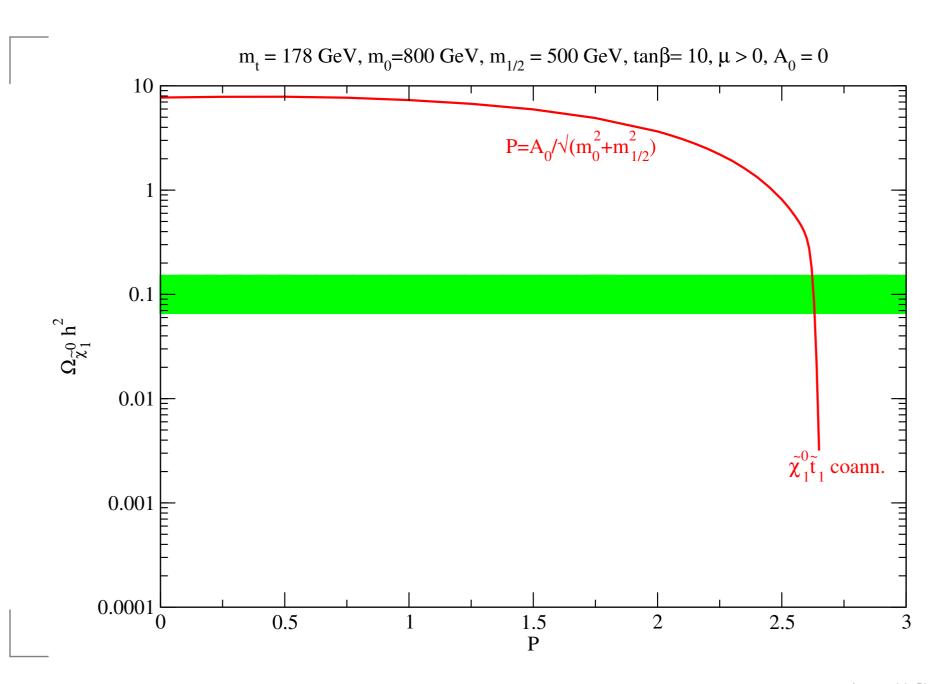
- Dial up co-annihilation
- Increase \tilde{h} component of $\tilde{\chi}_1^0$

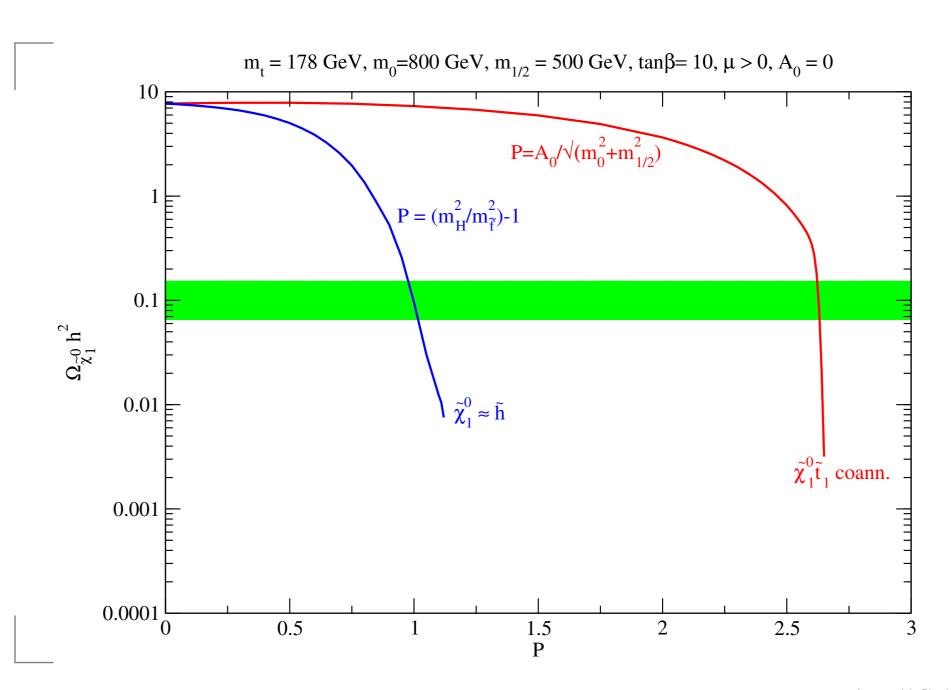
Beyond mSUGRA

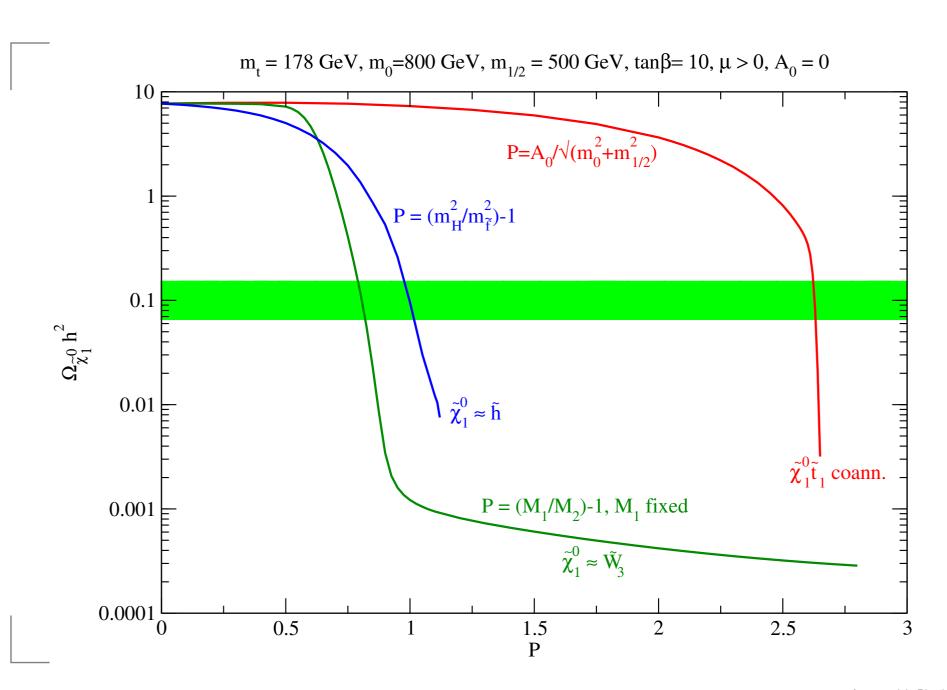
The predicted Dark Matter density can be altered by modifying the SUSY model and/or by modifying the cosmological model.

Reducing $\Omega_{\tilde{\chi}_1^0}$ by changing the SUSY model:

- Dial up co-annihilation
- Increase \tilde{h} component of $\tilde{\chi}_1^0$
- Increase \widetilde{W}_3 component of $\widetilde{\chi}_1^0$


Beyond mSUGRA


The predicted Dark Matter density can be altered by modifying the SUSY model and/or by modifying the cosmological model.


Reducing $\Omega_{\tilde{\chi}_1^0}$ by changing the SUSY model:

- Dial up co-annihilation
- Increase \tilde{h} component of $\tilde{\chi}_1^0$
- Increase \widetilde{W}_3 component of $\widetilde{\chi}_1^0$

These modifications lead to greatly altered collider phenomenology!

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

■ The axino Covi et al., hep-ph/9905212...

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- The axino Covi et al., hep-ph/9905212...
- The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; . . .

Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- The axino Covi et al., hep-ph/9905212...
- The gravitino Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; . . .
- A modulino

Hidden Sector DM (contd.)

Unfortunately,

• $\Omega_{
m DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2\propto T_{
m reheat}$

Hidden Sector DM (contd.)

Unfortunately,

- $\Omega_{
 m DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2\propto T_{
 m reheat}$
- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived

Hidden Sector DM (contd.)

Unfortunately,

- $\Omega_{
 m DM}$ can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}}h^2\propto T_{
 m reheat}$
- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived
- Detection of hidden sector DM seems impossible: Cross sections are way too small!

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

• Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low $T_{\rm reheat}$.

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low $T_{\rm reheat}$.

None of these mechanisms in general has observable consequences (except DM density).

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- Increase: through incease of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- Reduce: through decrease of $H(T_f)$; through late entropy production; or through low $T_{\rm reheat}$.

None of these mechanisms in general has observable consequences (except DM density).

If $\tilde{\chi}_1^0$ makes DM: Can use measurements at colliders to constrain cosmology!

■ Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D>4

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D>4
- Baryogenesis: Some models can be tested at colliders, others cannot

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D>4
- Baryogenesis: Some models can be tested at colliders, others cannot
- Dark Matter:

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D>4
- Baryogenesis: Some models can be tested at colliders, others cannot
- Dark Matter:
 - Many models can be tested at colliders, some cannot

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if D>4
- Baryogenesis: Some models can be tested at colliders, others cannot
- Dark Matter:
 - Many models can be tested at colliders, some cannot
 - SUSY WIMPs: Relic density often depends very sensitively on parameters: need very accurate measurements in collider experiments!