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Abstract

In this work we apply the Golec-Biernat Wisthoff Model in the calcu-
lation of Vector Meson production processes. Starting from very simple
non-relativistic wave function we show that the model provides a very
good description of J/¥ cross sections in a wide Q? range. Also for the
light mesons one obtains the correct W dependence and ratio longitu-
dinal/transverse cross sections, although in this case the normalization,
affected mainly by the wave function employed, is not in good agreement
with data.

1 Introduction

Figure 1: Scheme of Vector Meson Production in the Color Dipole Model

The model is built in the proton rest frame, where the pair ¢§ can
have a lifetime big enough to allow its interaction with the proton. In
this frame the ¢§ longitudinal momentum is quite big so that r, the bi-
dimensional separation of the pair doesn’t change significantly during the
process. For this reason one chooses to work in the (7, z) representation.

The informations about the of the interaction pair-proton are con-
tained in the dipole cross section, og5—p.

Within the Color Dipole approach the so called “saturation model”
was proposed by K. Golec-Biernat & M. Wiisthoff Model. In this model



in the inicial state and the same in the final state and the interaction cross
section, A = < V | d4q-p | ¥'*) >. In the (r, 2) representation it can be
approximated by

1
AL'T=‘/ d:/dzf' VT (r, 2) 040-p(Q, W, r) ¥5T(Q.r,2)  (5)
o

where Wy (r, z) is the vector meson wave function, ¥4(Q, r, =) is the pho-
ton wave function, o45—p(Q, W, r) is the cross section for the pair-proton
interaction. The amplitude normalization follows

do Al?
- lﬁl . (6)

Since the model does not incorporate any t dependence we assume the
ordinary exponencial t dependence, da/dt ~ Ce~5!"! observed in the data,
so that the total cross section is given by

1 do 114
poarVp)= ——lico = —=—. 7
clip > Vp)=gh=o=5T (7)

T
The photon wave function it is quite well known [5]. For photons with
longitudinal polarization we have

L Vv 1Vc
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and for transverse polarization
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In the expressions above N, is the number of colors, e4(m) is the quark
charge (mass), A1 are the helicities of g, § and ¢”(r,z) is the photon
spatial wave function given by

o7(r,z) = Ko(r\/Q*z(1— z) + m? ). (10)

In analogy with the photon wave function one can write for the longi-
tudinal polarized vector mesons

W = —2Mu oY (2, 1)6x1 -x, ()

and in the transverse polarization

‘I’T\; = ;—(-{ﬁ_q—z—)- ( :f: >¢V(:,r)6h')\,. (12)

However in the mesons case the spatial part of the wave function is
not known, and some hypothesis must be taken in consideration. In the
following sections we discuss the vector meson wave functions.



3 J/¥ wave function

Since for the heavy quarkonium the internal motion is small, we must built
the wave function in the the non-relativistic approach. For transverse
polarization final state total angular momentum is J; = 1. But in the
non-relativistic case, since the transverse momentum is k? ~ 0 the orbital
angular momentum must be L, = 0. Therefore the spin is necessarily
S = %1 which implies A; = A2, and the second term in Eq. (9) disappears.

The wave function in the (2, k) space is related to ¢v(z,r) throught
a 2-D Fourier transform,

2kl ir-
¢v(r,:)=/d bv(z, ki)e . (13)

So we analyse some possible relativistic situations for (z, k;) from wich we
write the wave function.

3.1 Delta Function

The simplest case one can have is to consider that ¢ and g have the same
longitudinal momentum fraction and that the transverse momentum is
null. This hypothesis can be translated as a Wave Funtion in the (z,k.)
space,

dv(z, k) = K 8(z — 1/2)8% (k). (14)
The only free parameter is the normalization. It can be set if we relate
the wave funtion with the decay width,

32ra’e? &’k
Th.-= M —t I/d~/ 1/'2 vz kol (15)

resulting
1 8x%% Ty, My

K=
2My e 32

(16)

The wave function in the (r, =) space representation, obtained via eq. (13),
1s
L an [Toe M0 50y (17)
2My eqa 32r o I !

The full expression for longitudinal and transverse wave functions is ob-
tained inserting the expression above in Eqs. 11 and 12.

d’V(r\ :) =

3.2 Gaussian function

Another possibility is to consider again the same longitudinal momentum
fraction for both ¢ and § but now we assume that some small transverse
momentum is allowed inside the J/¥. Following Ref.[8] instead of a delta
function we use for k; a Gaussian distribution around zero and the wave
function reads

oviz, k) =K §(z —1/2) exp(—a::2)

<

(18)



We take for a the value obtained from lattice QCD calculations. a = 1.6
and m. =1.43 GeV.
Again the normalization is obtained from the decay width,

a 1 8x/2 [TY, _Mv

K=
m2 2My eqa 327

{19)

and the (r, z) representation of the Wave Function comes from the Fourier
transform.

3.3 “Double-Gaussian” function

We propose now that not only the transverse momentum may have some
distribution but also the longitudinal momentum fraction has a Gaussian
distribution around 1/2, resulting

2

pviz k) = K expl=c3(z — 1/2))exp(-ars). (20)

Now the wave function has one extra parameter, c, however one extra con-
straint also comes up since now the wave function becomes normalizable.

So, once again we have from lattice QCD calculations a = 4.68 (and
m. =1.43 GeV), from the decay width

. a 1 8x3? [TY, _My c
K=— === . (21)
m2 2My eqa R Jrerf(c/2)
and from the orthogonality condition,
Nc ! d: 2 - 2 bY
é—;‘/o m/d r{mctb.(r,:)éj(r.:)}z&j (22)

we get ¢ = 27.22126. In this way the (r,z) representation of the wave
function is obtained via the Fourier transform with no free parameters.

4 Light Mesons wave function

Now for the light mesons the relativistic approach must be used. Using
the same relativization procedure as in Refs. [6, 3] one writes the wave
function in terms of the lightcone invariant variable § ? (3-momentum of
the quark in the non-relativistic limit),

m3 + k7

.2 1 N
P z(1=—z2) (23)

= 2(1‘42 —4m§), M=

In this expression M is invariant mass of gq§ system. Again a Gaussian
form is applied, now in the p variable,

8(5) = K (R exp [~ 2R (24)

from M, = 0.77 GeV and M, = 1.01 GeV we have



0, = (1/B)da/dt (t=0) (nb)

% 2 J/C’Z"é/) A_Z“:)

Elastic production of J/¥
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o = (1/B)da/dt (t=0) (nb)
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