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MICE, in preparation for the

Neutrino Factory



Neutrinos in the Standard Model
m Standard Model

neutrino: —
" Mass =0 |
= Dirac spinor ; ﬂlm))

v, and Vv, present (v, and il SM (MRST)

not present) pearie

= Quantum numbers:
Weak isospin — >
No conserved quantum

Q? > 400 GeV?

numbers | nicsy

= Only v, and v, interact O 108 06 04 02 0 02 04 06 08

Quantum numbers such
that v; and v, are sterile




Standard neutrino Model (SvM)?

® The observation of neutrino oscillations
implies:
" Mass = 0 and neutrino masses not equal
= v, and v, present

= and can interact

" No conserved quantum numbers and mass = 0

= Dirac spinor

. . CP violation
= Majorana spinor

® Neutrino could be its own antiparticle

= Mass states mix to produceHavour states

Ve 1 0 0 C13 0 sq3e Ci12 S12 0)\(vq
A% m =0 Co3 S23 0 1 ) —$842 €42 0 Vo
Ve 0 - 823 023 0 0 1 V3

- s13e'i8 0 013



® Motivation

m Sources for era of precision & sensitivity

= Neutrino Factory R&D

= MICE

® Conclusions



Motivation: understanding the mixing matrix
= Present knowledge of the parameters:

dm? = 7.92(11099) x 107° eV?
Am? =24 (17535 x 1073 eV?

sin” 015 = 0.314 (175°13)
SiIl2 923 =0.44 (ligéé)

sin? Ay < 3.2 x 102 Lisi

® Presently unknown:
= Sign of Am?,,
= Precision determination of 0.,

® Search for non-zero o



Motivation: key issues in partlcle physics

® The origin of mass

= Neutrino mass very small

Different origin to quark and
lepton mass?
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Motivation: key issues in particle physics
® The origin of mass

= Neutrino mass very small

Different origin to quark and
lepton mass?

® The origin of flavour

= Neutrino mixing different from quark mixing
‘Natural’ explanation in ‘see-saw’ models?
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Motivation: key issues in particle physics
® The origin of mass

= Neutrino mass very small

= Different origin to quark and
lepton mass?

®= The origin of flavour
= Neutrino mixing different from quark mixing
= ‘Natural’ explanation in ‘see-saw’ models?
® The quest for unification

= ‘Unified’ theories relate quarks to leptons

= Generating relationships between quark and lepton
mixing angles




Motivation: key issues in particle physics

= The origin of dark matter & dark energy
= ~96% of matter/energy is not understood

= Neutrinos:
= Contribution as large as baryonic matter?
= |n some models neutrinos impact on dark energy

® The absence of anti-matter
= CP violation in lepton sector underpins removal of anti-
matter
= ‘Dirac’ phase, 9, not directly responsible, but,

= Relationship of relevant (Majorana) phases to 6 is model
dependent

= Explanation of (absence of) large-scale structure

= Neutrino interacts only weakly — possible means of
communication across large distances?

= |n some models, super-symmetric partner to neutrino
may be responsible for inflation



Motivation: the next generation

B G yctematics MINOS&
Correlations I I[CARUS&
Degeneracles I CFERA

M i

I NOvVA
Reactor—II
P.Huber et al.,
hep-ph/0403068 = CHOOZ & Solar
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Motivation: timescales
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Neutrino source — options:
= Second generation [TETSYOyvT VSRS

ring

super-beam
Maoneatir //

. C E R N ) F N A L, B N L ) Proton Driver Pion Muon
Production Cooling
J-PARC II R

g

~ o 7 M ¥
| Target Bk

0. 11.8 GeV 3ch — i Phase Cooling
inac e
RCS 15 GeV capture TRiaton 2 GeV
RCS and muon linac
4 bunching )
U4
,,’ 2-8GeV
/ Muon
4 Accelerators

8 - 50 GeV
recirc.

= Neutrino Factory /\

L, =2500 m

Decay ring

gHe—>36Li e v

Decay
Average E ., =1.937 MeV

ISOL target Ring
& Ion sowrce )
18 18 +,
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= Beta-beam
= / Average E s =1.86 MeV

Storage ring ) %

and fast
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Super-beams: SPL-Frejus

Campagne r _
W cernom el

LSM-Fréjus S5 e

~ % < Prosent Tunnd Near detector
A N Decay Tunnel
N = “'u;-,_ _ N hear Deteckd
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Future
Safety Tunnel

Future Laboratory _ —7
with Water Cerenkov Detectors

= New optimisation: 4 MW; 440 kTon H,O
= Energy: 3.5 GeV N Horn/target

= Particle production = Decay tunnel




SPL-Frejus: performance Campagne

Assumes 2%
systematic
uncertainties

T2Kx10, 5 yrs



Neutrino Factory: sensitivity

CP scaling (1o, 6cp=3/2 1) CP pattern (30, sin®26;3=0.1)
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= Neutrino Factory: 10%' decays/year; 50 GeV

= 50 kTon magnetised iron calorimeter
3000 km base line P.Huber et al., hep-ph/041219¢




Neutrino Factory: sensitivity

Synergy of mass hierarchy
NuFact-l11(3000 km)+T2HK removed
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Beta-beam

® Optimisation

= Beam energy (y)

= Detector:
H,O Ckov

TASD
considered

=in” :EL] :.e-.n;iu"..H:. limii




Neutrino Factory / beta-beam

Sensitivity limit to sin” 26,3 (90% CL)

] Systematics
Correlations BB@ l 30’1(]1]

Degeneracy

BB@732km

BB@3000km

NuFact—1

NuFact—II




Super-beam/beta-beam/Neutrino Factory

® Neutrino Factory offers best performance

= Best sensitivity to o
= Unless sin?20,, is large

®m NF optimisation for large sin?20,, to be reviewed

= Best ‘discovery reach’ in sin%20,,

® High-y beta-beam competitive
= v~ 350 requires ‘1 TeV proton machine’

® High-performance super-beam has 6 =0
discovery potential if sin?26,, is large

= Multi-megawatt class proton source
= Megaton scale H,O Cherenkov



The challenge: time-scales

1072 ¢

: - Era of
' sensitivity & precision
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2015
Year
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B Optimum schedule
® Science driven

= Potential match to
funding window

® Challenge:
" To make the case!

® |[nternational
scoping study
= 1-year study of

Neutrino Factory and
super-beam facility

.. a step on the way?




® Proton driver
Proton = Comment on front end

driver

® Target and capture

Target

and
capture -
= Cooling
Phase rotation . M IC E
and bunching

m Acceleration

M lerati Muon
uon acceleration storage




H" linac

Proton

driver

- N

Target
and
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.

Phase rotation
and bunching
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M lerati Muon
BN Muon acceleration storage



Proton driver & its front end

= Proton labs all have proton-driver plans
= .. too much detail to cover here!

= Importance to inject ‘good’ beam:

= Parallel front-end developments (in Europe):

= CERN: 3 MeV test place; Linac 4; SPL

= CCLRC: Front-end test stand; 180 MeV linac
= CEA: SPES-1

= INFN: Incipit

= CNRS, IPN, IN2P3, Eurotrans: PDS-XADS

= Eurisol, HIPPI

= Synergy!

= Breadth of applications is a great strength



H" linac

Proton
driver

' [ ]

Target

and
capture Target and capture >

Phase rotation [“F mphasis on target work, but

and bunching

‘-

significant progress in phase-
rotation and bunching schemes
pion/muon rates vs proton
energy efc. etc.

" — Muon
=N Muon acceleration storage

_




Target and capture

= Two schemes:
= Horn: good match to super-beam

= Tapered solenoid: possible to capture u* and
simultaneously (US Study lla)

REPLACEABLE HOZZLE
INSERT

Current of 300 kA /& "
: HERCURY SUPPLY /

TUBE

IROH CORE

HOLLOW CORE

500 mm

HAGHET
LIHES

NEUTRINO FACTORY - Horn 1 prototype i MAGHET SUPPORT
AHD SHIELD CASTHG

TARGET IHTERACTION

Study Il ™



Target: evaluation of options

m Solid target:
= Lifetime: beam-induced shock leads to fracture

= |[rradiation tests:

Exposure of various candidate materials to pulsed
proton beam at BNL and at CERN

Annealing of target material through ‘baking’ also
being studied

= Shock test (UKNF):

Current pulse to
simulate heating

Thin (tantalum wire)

Numerical models
(LS 'Dyna) bei n g o - udm o water cooled vacuum chamber
studied

Bennett

Schematic diagram of the test chamber and heater oven.



Target: evaluation of options
= Liquid-mercury jet:
= To date, have tested:

= Effect of beam on jet without magnetic field
= Development of jet in a solenoidal magnetic field

= Progress in modelling results

Lettry/Robert: laser @ water jet

Samulyak Cavitation, surface ripples



High-power target experiment
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High-power target experiment

= Proposal to CERN ISOLDE/nTOF committee

Studies of a target system for a
4 MW, 24 GeV proton beam

Spokespersons: H.Kirk (BNL), K.McDonald (Princeton)
APPROVED! MERIT (nTOF11)
= Participating institutes:
= BNL, CERN, KEK, ORL, Princeton, RAL
= Mercury jet:
= 1 cm diameter; 20 m/s
® PS delivers:

= 10'2 - 10" protons per 2 us spill in 4 bunches
= Beam spot ~3 mm diameter




MERIT: objectives

m Effect of increasing charge density:
" 7x10'2 - 28x10'2 protons per spill

= Effect of magnetic field on jet dispersal:
=0-15T

m Cavitation:
————— 500ns ————+———— 250t0 1500ns ——————————

Pump Probe

®m 50 Hz operation



MERIT: preparations

Jet deflector Primary containment Hg Jet Z=0 view-port

= ré 2 E b [re—

p——

Proton beam Secondary containment

= Viewing system under development

® Mercury pump system under development




MERIT preparatlons
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LN, Operation

= 15T (5.5 MW pulsed
power)

®= 15 cm warm bore
1 m long beam pipe




NTOF11: schedule

= 2005
= March nToF11 approved
= Spring solenoid construction completed
= Summer solenoid tests
= Winter construction of Hg system
= 2006
= April solenoid test finished
= June solenoid shipped to CERN

= autumn integrated test at CERN
= December fully ready for beam

= 2007
= April final run at PS start-up



H" linac
! Emphasis on MICE, but

Proton important progress on new
driver cooling schemes: ring coolers,
FFAG 6D coolers, helical coolers,

Target
and
capture

Phase rotation
and bunching
v

, lonisation cooling and Mb
w

M lerati Muon
BN Muon acceleration storage



Cooling and the Neutrino Factory

Number Cooling
drota of cooling| Gain |per cell
drive Design cells factor (20) Comment
US Study II 26 6 . Increase m phase-space density in
. acceptance of downstream accelertor
U
. Increased acceptance in muon
pture TS Stady IIa 26 p 2 acceleration section, use of FFAGE.
Lithium-hydnde absorber.
d b ‘B TR 26 10 . It1|::1.'es.15|3 in muon vield at E.GEET OWVEr
optimzed NE without cooling
Acceleration based on FFAGs.
Performance inprovement may be
Japan - =15-2 possible with cooling.
Possible transverse and longitudinal
cooling using FFA s,
Muon

Muon acceleration storage




lonisation cooling

Principle

0,

dbE/dx

o g 2 3 % ] f . .|I '. s ,I . ‘._-_ '_ o
F - e o=, ..! - -’. : | g e _ : i : I'I"r_ S ’f: Illl.f | -
. t' l-.-"-,ll y B \ ';'I' | . : '- . _:_, TS -
multiple scattering

©,

re-acceleration Measure its performance in a variety of
modes of operation and beam conditions

y 2
: i.e. results will allow NuFact complex to be
D, optimised

\ Practice

Design, build, commission and operate a
realistic section of cooling channel




MICE collaboration

| J Universite Catholique de Louvain Belgium

INFN: Bari, Frascati, Genova, Legnaro, Milano, Napoli, Padova, Trieste
ROMA TRE university, Italy

® KEK, Osaka University Japan

THE MICE COLLABORATION

s NIKHEF The Netherlands 3 continents
7 countries
N 40 institute members
S| CERN 140 individual members
_ : o . |
Geneva, PST Switzerland Engineers & physicists (part. & accel.)
Brunel, Edinburgh, Glasgow, Liverpool, Imperial, Oxford, RAL,
~al=S Sheffield UK Spokesman: A.Blondel (GVA)
Deputy: M.Zisman (LBNL)
E ANL, BNL, FNAL, JLClb, LBNL, Proj. Man.: P.Drumm (RAL)

Universities of Fairfield, Chicago, UCLA Physics, Northern Illinois,
Towa, Mississippi, UC Riverside, Illinois-UC
Enrico Fermi Institute, Illinois Institute of Technology USA




MICE on ISIS at RAL

ISIS CONTROL CABLES
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MICE Target

= Concept:

= Target dips into
halo of ISIS beam

On demand
1 — 3 Hz operation

= Engineering:

= Require to
separate vacuum
surrounding
target mechanism
from ISIS machine
vacuum

A

Target shaft length
(from bottom of
shaft magnet to
target tip) is
355mm

MICE Target !




MICE Muon Beam: target

= Pre-prototype:

= Gain experience with construction and operation




MICE Hall: hydrogen-system R&D
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MICE Hall: hydrogen-system R&D

Hydrogen inlet and outlet
/ Cryocooler SRDK-415
FH 1.5W @4.2K .
35/45 W @50K He inlet and outlet

Radiation shield

Level Condenser

SENSsors

LEVEL SENSOR
SCHEME 4

LH2 dummy absorber

Cu bottom plate
with heat exchanger
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Muon lonisation Cooling Experiment




MICE: cooling performance

Initial emittance

Final emittance
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Cooling Measurement

Cooling Measurement Cooling Measurement Resolution

L

x Truth Emittance Difference

+ Reconstructed Emittance Difference

Change in Emittance (percent)

Emittance Difference Resolution (percent)

IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|Ir IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10
Initial Emittance (pi mm rad) Generated Emittance (pi mm rad)
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Spectrometer: solenoid

Lead Neck 4 K Cooler

— Condenser

Fill & Vent Neck

He Gas Tube

Liquid He Tube

Cold Mass Support

Drawing by S. Q. Yang

The 50 K shields are not shown.




Brunel,

Spectrometer: tracker

FNAL,

= KEK test: 30Sep05 — 070ct05 impariai
EiI\E/:a(;'pool,
Osaka,
Riverside,
UCLA

Trigger Countsr

n 2 Beamline 1 25 5m
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Spectrometer: tracker; electronics

®m Two VLPC cassettes
borrowed from D
= Prototype AFE Il boards #
borrowed from DY

= Some MICE specific
interface boards

®m Cryostat design/built
for MICE

= Cryocooler for
refrigeration 52

®= Commissioning of AFE //
Il - FNAL experts:

= Require expertise in B e
tracker team A G




Events

Spectrometer: tracke

= Prototypes:

Events

] x°/ndf
5 Constant 614.4
a Mean 5730

600 Sigma 4.621

500

400

300

200

100 . .

First light!
0

10 125 15 175 20 225 25
Photo Electrons

0 25 5 175

300
200
100

Constant 310.2
Mean 10.56
Sigma 5.124
2500 ppm 3HF g
5 10 15 20 25 30
Light Yield (PE)
-+ +- Constant 314.5
++ by Mean 10.25
++_¢. Sigma 5.483
-0—". *e
-- oy s B
3500 ppm 3HF e, ., - 3
5 10 15 20 25 30
Light Yield (PE)
- Constant 1423
o+ T Mean 8.961
- - Sigma 4.121
-
o000 o
25 30



Upstream Cherenkov

= Upstream Ckov
o C.F,, radiator with n=1.15
s 4 PMTs
« 20ntop, 2 an bottom
s Threshold cherenkoy:
« 0.7 MeV for electrons
s 140 MeV for muons
« 150 MeV For pions
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ToF/trigger

= Prototype development/performance tests

o

@ = |ssues:

= Rate (especially ToFO0)
= Operation in magnetic field

LASA tests 07/04: H6533 mod booster + mu metal (B=0 Gauss)
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Downstream Cherenkov

The support frame 1= not longitudinally
thicker Than (KO




Muon calorimeter:

B Task: /e separation Rome lll, Trieste

Scintillating fibers embedded in grooved lead layers

Side view:
2 blocks of
72x36x16 cm?
72 cm
Readout:
18 PMTs per layer
__Eﬁﬁﬁﬂl, at both ends
Minimum cell size 4x4cm?
Y due to PMT support
¥ ,K/;Ecm
X £ (no limitation)

16 cm



development

Muon calorimeter
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hannel

: cooling c

MICE




® Focus-coils:
= 5T

= Field flip
(focus)

= Conceptual
& now
detailed

design of
magnets

= Safety
analysis

KEK, IIT, FNAL, RAL,
Oxford, Missippi




= Cavity body + water
cooling lines
* Ports and flanges
* RF loop couplers
= Cavity support structure
= Cavity tuners
= Ceramic RF windows (~4”)
= Curved Be windows
= MICE specifics
» Tuners
» Integration
<+ joints and flanges
> Possible LN, operation

‘ Layout of cooling lines ‘




CaV|ty prototype MuCooI

\/ E- beam Weldlng

v’ Ports

v Water cooling lines

» Couplers assembled first time

(mid-April-2005)

e First low power measurement
e frequency ~ 199.5 MHz
e coupling ~ 5 (max)
*Q~ 5000

= Now, preparing to condition in MTA at FNAL



ﬁ[ﬁ% fad\’

Curved Be windows

Tld

ERNEST ORLANDO LAWRENCE Muon Collaboration

BERKELEY NATIONAL LABORATORY

Each cavity will require a pair of 0.38 mm thick pre-
curved beryllium windows with Ti-N coating

Double-curved shape prevents buckling caused by
thermal expansion due to RF heating

Thermally induced deflections are predictable

A die is applied at high temperature to form window

Copper frames are brazed to beryllium windows in a
subsequent process

MICE Collaboration Meeting at RAL
October 22 ~ 24, 2005



Cooling channel: RF power

® Require 1 MW/cavity to produce 8 MV/m

= Will use 4 x 2.5 MW amplifiers
m 2 circuits from LBNL
m 2 circuits being negotiated from CERN

CERN

Daresbury

201 MHz Cavity Module 201 MHz Cavity Module




Cooling channel: RF power

= Refurbishment has begun:
L = e -

supply of cdmponents




Step I: Spring 20
ﬂ“l °p pring 2007 Study

Systematically
[
e

Step VI 2009?



MICE Phase | on ISIS at RAL
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H" linac m Rapid acceleration
= Muons decay

Proton ] Large apertu re

driver _
® Reduce constraints on
cooling channel

Target .
and ® Favoured scenario:
capture ] . -
| = Fixed field alternating
Phase rotation gradient (FFAG)

and bunching

accelerators
o m Storage ring:
w = Concept development (US)

M lerati Muon —
BN Muon acceleration storage




FFAG R&D

= PRISM: culmination of Japanese scaling-FFAG
R&D

= Built on success of
POP machines

International activity
developing
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non-scaling FFAG

s il

concept

= Electron model:

POP machine for
non-scaling FFAG




m Several studies at the turn of the century
= US Studies | and Il
= ECFA/CERN Study
= NuFact-J Study

established feasibility & R&D programme

= R&D programme is nhow maturing:

= I[nternational Muon lonisation Cooling
Experiment

= International high-power targetry experiment

= I[nternational rapid acceleration (FFAG)
programme

® |n parallel, continued concept development




Desirable timescale
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Desirable timescale

2005 Super-beam‘ Neutrino Factory Beta-beam ‘

Concept development
(design studies)

2015

Era of precision and sensitivity



Conclusion:

® Clear programme:

= Present experiments to:
= Tie down 0,,, 0,,, Am_,2, Am,,?

= Next generation of experiments to:
= Make first measurement of 0,, (or set limit)
= Begin search for leptonic CP violation

= Energetic programme of R&D by which to:

= Arrive at a consensus programme for the era of precision and
sensitivity
= Options:
m Second-generation super-beam
m Beta-beam
® Neutrino Factory

alone or in combination

= A fantastic programme!






Backup slides



BNL-VLBL

m Upgraded AGS at 28 GeV
= Replace booster with 1.2 GeV SC linac

Cicpobsir 1, 2004 BHL-TIZI020044R 8

The AGS-Based Super Neutrino Beam Facility ZESGHS
Conceptual Design Report St

Editor: W, T. ¥Weng, M. Diwan, and 0. Raparia

Contribators and Participants

J. Alezzi, D, Barton, [, Beavis, 5 Balasia, | Ben-Z, 1 Er+r|run M. Civan,
P. K. Feng, I Gallarda, 0. Gaszner, B. Hahn, . Hsuoh, 5.Kahn, H. Kik,
.. Les, E. Lessard, [ Lowesnstsin, H. Ludssig, K. Mirabslla,

W, Marciano, | Marneris, T. Mehring, . Pearson, & Pendzick,

o Assume UNO 500 kTon H,O
LT ® Running assumptions:
S N C V& T, " v:1 MW, 5yrs
= V-2 MW, 5yrs
® Performance updated.:

Brockhawen Natioral Laboratory

Lipton, NY 11073 o Example Only —>

Cieyaibsir 1, 2004



BNL-VLBL: sensitivity Viren

Inverted Normal Any
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= Very long baseline:
= Sensitivity to Am,,? from matter effects




Super-NOvVA Winter
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Hyper-Kamiokande

F i

=] ]
==

Height 58m

2 detectors 48m X 50m x 250 m
1 Mton total mass



T2K |l sensitivity
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