ZEUS results for EPS-HEP 2007 + 1 combined ZEUS+H1 result

on behalf of the ZEUS (and H1) Collaborations

DESY seminar July 17, 2007

Results released after ICHEP 2006

Hadronic final states

- Forward Dijets in PHP at HERAI
- Dijets in high Q² DIS at HERAII
- Scaled momentum distribution at HERAI+II
- Multi-jet cross sections in CC DIS at HERA II
- Jet substructure in NC DIS
- Measurement of α_s at HERA (**ZEUS+H1**)

EW and BSM Physics

- NC DIS with Polarised e⁻ at HERAII
- CC with polarised e⁺ at HERAII
- Measurement of F_{2} at high y at HERAII
- Di-electron production at HERAI+II
- W and high-p_τ isolated leptons at HERAI+II
 (ZEUS+H1)

Heavy Flavours

- D⁰ in DIS at HERAI
- F_2^{cc} from D* and D⁺ in DIS at HERAII
- Excited charm mesons at HERAII
- Charm fragmentation functions
- $b \rightarrow e$ dijet in PHP at HERAI
- $b \rightarrow \mu$ dijet in PHP at HERAII
- F_2^{bb} at HERAII

Diffraction

- Diffractive dijets in PHP and DIS at HERAI
- Dijets with a leading neutron at HERAI
- Exclusive ρ electroproduction at HERAI
- b-slope in DVCS using the LPS
- Elastic Y production at HERAI+II

www-zeus.desy.de/physics/phch/conf/eps07

Luminosity

ZEUS has collected(96-07):

- 492 pb⁻¹ of high energy data
- 14 pb⁻¹ of low energy data
- 7 pb⁻¹ of medium energy data.

We have available HER data (polarised), LER and MER data for F_L and sigma_tot measurement...

...it's time to concentrate on analysis...

First outcome for LER and MER

Good Physics data were provided during LER and MER.

Results on BSM and EW physics

- W production and high- p_{τ} isolated leptons, H1+ZEUS combined (in H1 talk)
- Multi-lepton production
- CC cross section in e⁺p collisions (2006/07 data)
 - CC in 2005 e⁻: preliminary at ICHEP06
 - NC in 2005/06 e⁻: preliminary at DIS07

W production and high-p_T leptons

492 pb⁻¹ of data analysed. No excess wrt standard model predictions.

q

Multi-electron production

M12>80GeV					
Topology	DATA	SM	Di-electron	QEDC	NC
ee	8	7.1 ^{+0.7} -0.6	5.1+/-0.5	1.4 ^{+0.5} -0.3	0.5+/-0.1
eee	4	3.1 ^{+0.6} -0.3	3.1+/-0.3	<0.04	<0.5
M12>100GeV					
Topology	DATA	SM	Di-electron	QEDC	NC
ee	2	1.9+/-0.2	0.9+/-0.13	0.8+/-0.2	0.1+/-0.05
eee	2	1.0 ^{+0.5} -0.1	1.0+/-0.1	<0.01	<0.5

UHI **Ř**

No excess wrt standard model predictions observed.

grow with the polarisation.

Good agreement with the SM is observed.

July 17, 2007

 $\frac{d^2\sigma(e^+p)}{dxdQ^2} = (1+P)\frac{G_F^2}{2\pi}\frac{M_W^4}{(Q^2+M_W^2)^2}[(\overline{u}+\overline{c})+(1-y)^2(d+s)]$

0

0.5

P_e

8

-0.5

DESY Seminar Monica Turcato

0

Heavy Flavour results

- D^0 and D^+ production in DIS, F_2^{cc}
- Excited charmed mesons
- Beauty PHP with semi-leptonic decay into electrons
- Beauty PHP with semi-leptonic decay into muons

Charm mesons at HERAII: MVD tagging

D⁰ production in DIS at HERAII

- Good description of the data by NLO.
- Charm mesons can be used to measure F_2^{cc} .

Improving precision wrt HERAI.

Look forward to results from different *D* mesons combined!

배 July 17, 2007

DESY Sen Monica Tu

Masses and properties of $D_1(2420)$, $D_2^*(2460)$, $D_s^{1}(2536)$ are measured.

$$\begin{split} M(D_1^0) &= 2419.8 \pm 2.0(\text{stat.})^{+0.8}_{-1.0}(\text{syst.}) \text{ MeV}, \\ M(D_2^{*0}) &= 2468.4 \pm 3.6(\text{stat.})^{+1.1}_{-1.3}(\text{syst.}) \text{ MeV}, \\ M(D_{s1}^+) &= 2535.30^{+0.44}_{-0.41}(\text{stat.})^{+0.09}_{-0.08}(\text{syst.}) \text{ MeV} \\ \textbf{CLEO} \ (D_{s1}^+ \rightarrow D^{*0}K^+) : R = -0.23^{+0.40}_{-0.32} \end{split}$$

Belle prel. : $R = -0.70 \pm 0.03$ $R(D_{s1}^+) = -0.74^{+0.23}_{-0.17}(\text{stat.})^{+0.06}_{-0.05}(\text{syst.})$ July 17, 2007 DESY S Monice

Excited D mesons (HERAI)

b PHP with s/l decay into electrons (HERAI)

ZEUS

Beauty reconstructed from semi-leptonic decay into e[±]. Separation between signal and background based on a likelihood function.

The kinematic region is extended to lower p_{T} of the electron and the jet.

Good agreement between data and NLO.

b PHP with s/l decay into muons (HERAII)

b summary plot

Measurements done with very different methods are in agreement and well described by NLO.

Results on hadronic final states

- Jet substructure in NC DIS at HERAII
- Measurement of α_s (ZEUS+H1 combined)

Jet substructure in NC DIS

July 17, 2007

Perturbative QCD predicts that gluon initiated jets are broader than quark initiated jets.

Difference in the jet shape observed in events with one jet (quark enriched) and two jets, looking at the second jet, close to the first (gluon enriched)

Measurement of α_{c} (ZEUS+H1 combined)

Idea: combine the most precise measurements from both experiments and make a simultaneous fit to both data sets, instead of combining $\alpha_{s}(M_{z})$ values.

The most precise determination of $\alpha_s(M_z)$ comes from the measurement of inclusive jet cross section in NC DIS at high-Q².

 $\alpha_s(M_Z) = 0.1207 \pm 0.0014 \text{ (stat.)} \stackrel{+0.0035}{_{-0.0033}} \text{(exp.)} \stackrel{+0.0022}{_{-0.0023}} \text{(th.)} \mathsf{ZEUS, err.=3.6\%}$ $\alpha_s(M_Z) = 0.1193 \pm 0.0014 \text{(exp.)} \stackrel{+0.0049}{_{-0.0034}} \text{(th.)} \qquad \mathsf{H1, err.=4.3\%}$

Fit to data

ZEUS: inclusive jet cross section in NC DIS (125<Q²<100000 GeV²)

H1: inclusive jet cross section in NC DIS (125<Q²<15000 GeV²)

ш

曲

Extraction of α_s

The idea is to use NLO calculations to parametrise the dependence of an observable on α_s , and then to extract the α_s value from the measured value using the obtained parametrisation.

Experimental uncertainties:

• energy scale, luminosity, model dependence...

Theoretical uncertainties:

 terms beyond NLO (dominant), factorisation scale, PDFs, hadronisation corrections.

Running of α_{s} at HERA

HERA alone data show the running of $\alpha_{\!_{_{\! S}}}$.

Results on diffraction

- Diffractive dijets in DIS
- Dijets with a leading neutron
- *b*-slope of DVCS using the LPS
- Elastic Y photoproduction

Diffractive dijets in DIS

The data are described by the NLO predictions within theoretical uncertainties.

Data are better described by the H12006 FitB and MRW 2006 dPFDs.

The data are able to discriminate between NLO predictions based on different dPDFs.

Dijets with a leading neutron

DVCS with the LPS at HERAI

Cross section has been measured in two W bins, using 240 pb⁻¹of data. It is consistent with previous measurements, and more precise.

Summary

- Many analyses are combining HERAI and HERAII data, others are on the way to.
- Interesting results are coming out of high energy data, also using the polarisation information.
- The LER and MER running have provided good quality data.
- Time to focus on analysis! The amount of available data is pretty high :-)

Backup slides

D⁺ production in DIS at HERAII

- Data are well described by NLO QCD predictions.
- Precision is better than for HERAI

Diffractive dijets in PHP

Reasonable agreement between data and NLO QCD predictions.

No evidence for a suppression of the cross section in the resolved-enriched sample $(x_{\gamma}^{obs} < 0.75)$

