

Summary of Spin Physics @ DIS 2005

Pasquale Di Nezza

DESY, Hamburg 10/05/05

(Spin)-Structure of the Nucleon

Polarized Structure Functions: g₁

New treatment of smearing. Correlation matrix:

removes systematical correlations

introduces statistical correlations

First Moments Calculation

Exp.	${\rm Q^2(GeV^2)}$	x range	Target	Moment	HERMES Moment
SMC	5	0.03-0.7	p	0.128±0.006	0.1141±0.0026
E143	5	0.03-0.8		0.117±0.003	0.1174±0.0027
SMC	5	0.03-0.7	d	0.043±0.007	0.0416±0.0013
E143	5	0.03-0.8	d	0.043±0.003	0.0433±0.0013

Polarized Structure Functions: g₁ OMPA 80.0 7 g • COMPASS 0.04 0.5 □ SMC 0.02 ▲ HERMES n €Į 0.4 • E143 -0.02 -0.04 ♦ E155 0.3 -0.06 10⁻² x 0.2 0.1 0 ●Ţ ł ф -0.1 **10**⁻¹ **10**⁻²

X

Extended x-range with higher accuracy.

COMPASS systematically > SMC at low-x.

Tensor Structure Function b₁^d

First measurement of b_1^{d} : different from 0 at small x

 $A_{zz} \sim \mathcal{O}(1\%) \rightarrow \text{small impact on } g_1$

(Semi)-Inclusive (Th.)

Inclusive (Th.)

theoretical issues - small x: Ermolaev hep-ph/0503019 small x behavior of g1 should be more than just DGLAP DGLAP: $g_1 \approx \exp(\sqrt{C \ln(1/x) \ln \ln Q^2})$ R_{NLO} 3.5 $g_1^{\rm NS}/g_1^{\rm NS,DGLAP}$ resum (IREE) $\left[\alpha_{s} \ln^{2}(1/x)\right]^{k}$ 3 2.5 $\xrightarrow{\text{DLA}} g_1 \approx (1/x)^{\Delta} \quad \Delta_{\text{NS}} \approx 0.43, \, \Delta_{\text{S}} \approx 0.86$ 2 1.5 1 0.5 to describe entire x-range: 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} merge small-x resummation w/ DGLAP x

small x behavior can be scrutinized at a future pol. ep-collider like eRHIC

Spin Structure at high x

 \mathbf{O}

Precision measurements at high x for:

 A_1^n , $\Delta u/u$, $\Delta d/d$, A_2^n , g_1^n , g_2^n , A_1^p , A_1^d , g_2^n , ...

Sometimes statistical errors improved of 1 order of magnitude

Jefferson Lab

Duality in Spin Structure

- Precision data for 1<Q²<4 GeV²
- •Direct extraction of g1 and g2 (and A1/A2)
- Test of spin-flavor dependence of duality

Data have same behavior up to $x\sim0.55$ Duality starts for Q²~2 GeV²

(Semi)-Inclusive (Th.)

calc. from 1st principles or models: Schierholz, Signal lattice meson cloud

lattice simulations based on OPE - provide moments

$$a_n^q(\mu) = \int_0^1 dx \, x^n \Delta q(x,\mu^2) = \Delta^n q$$
 $a_0^q = \Delta q, \quad \boxed{g_A = \Delta u - \Delta d}$

$$2\int_0^1 dx \, x^n g_1(x, Q^2) = e_{1,n}(Q^2/\mu^2, g(\mu^2)) \, a_n(\mu)$$

$$2\int_{0}^{1} dx \, x^{n} g_{2}(x, Q^{2}) = \frac{n}{n+1} \left[e_{2,n}(Q^{2}/\mu^{2}, g(\mu^{2})) \, d_{n}(\mu) - e_{1,n}(Q^{2}/\mu^{2}, g(\mu^{2})) \, a_{n}(\mu) \right]$$

twist-3

parton-parton correlation

(Semi)-Inclusive (Th.)

Schierholz

e.g., 2nd moment (dyn. Wilson fermions, 2 flavors)

suggests that twist-3 might be small

(Spin)-Structure of the Nucleon

Operator decomposition of the Correlation Function at Tw-2

$$\Phi_{Corr}^{Tw2}(x) = \frac{1}{2} \{ f_1(x) + S_L g_1(x) \gamma_5 + h_1(x) \gamma_5 \gamma S_T \} \gamma^{-1}$$

... transversity, last unknown twist-2 density

DIS + SIDIS cross section

 $d\sigma = d\sigma_{UU} + \cos 2\phi d\sigma_{UU} + \frac{1}{Q}\cos\phi d\sigma_{UU} + \lambda \frac{1}{Q}\sin\phi d\sigma_{LU}$

 $+S_{L}\left|\sin 2\phi d\sigma_{UL} + \frac{1}{Q}\sin\phi d\sigma_{UL}\right| + \lambda S_{L}\left|d\sigma_{LL} + \frac{1}{Q}\cos\phi d\sigma_{LL}\right|$

Chiral-odd Distribution Function

<u>Relativistic nature of quark</u>. In absence of relativistic effects $h_1(x)=g_1(x)$

<u>Q² -evolution</u>. Unlike for $g_1^p(x)$, the gluon doesn't mix with quark in $h_1^p(x)$

High sensitivity to the <u>valence quark polarization</u> q and \overline{q} have opposite sign.

<u>Tensor charge:</u> first moment of h_1 . Calculable by lattice QCD.

 $_{L} + \frac{1}{O}\cos\phi d\sigma_{LL}$

- Peculiarity of f_{1t}^{\perp}
- •Chiral-even naïve T-odd DF
- •Related to parton orbital momentum
- Violates naïve universality of PDF
- Different sign of f_{1t}^{\perp} in DY

remarks on T-oddness, SSA, factorization:

- T-oddness must not be confused with true time reversal invariance better call it <u>"artificial/naive" time reversal</u> (all SSA are odd under parity x naive time reversal)
- simple model:

scattering off a rotating object

initial/final-state int. essential for SSA

- simple model to understand SSA (breakdown of orbital symmetry)
- possible way to understand factorization for SSA

Sivers

- remarks on T-oddness CC
- T-oddness must not be with true time reversa better call it <u>"artificial</u> (all SSA are odd under
- simple model: scattering off a r

initial/final-state int. essential for S

- simple model to underst
- possible way to understand factorization for 55%

Sivers

Statistical sample (not final) largely improved. Clear evidence for both Collins and Sivers asymmetry

Non vanish La

No sizeable effect.

Possible cancellations in isoscalar target (⁶LiD)

 \Rightarrow Expected 3*statistic, 2006 runs on p target (NH₃)

Transversity (Th.)

• extraction of "Sivers function": $f_{iT} = \bullet - \bullet$

Prokudin hep-ph/0501196

COMPASS

<u>strategy</u>: (1) fix intr. trans. mom. from <u>unpol</u>. data first (2) estimate Sivers fct. from HERMES data (3) check COMPASS data

- In transverse polarised target
- •Theory: polarization w.r.t. γ^*
- •Exp: polarization w.r.t. lepton beam

Conversion with subleading-twist term:

$$A_{\mathsf{UT},\boldsymbol{q}}^{\sin\left(\Phi\pm\Phi_{S}\right)} \approx A_{\mathsf{UT},\boldsymbol{l}}^{\sin\left(\Phi\pm\Phi_{S}\right)} - \frac{1}{2}\sin\theta_{\gamma^{*}}A_{\mathsf{UL},\boldsymbol{l}}^{\sin\Phi}$$

- $A_{\mathsf{UL},\boldsymbol{q}}^{\sin\Phi}$ is about 2-5% for π^+
- and approximately zero for π^-
- Systematic uncertainty is less than 0.003.
- Maximum difference $|A_{UT,q} A_{UT,l}| < 0.004$

- backward angles.
- A new Forward Calorimeter (proposal) could resolve origin of A_N and characterization of nuclear shadowing at small x.
 - Initial state (Sivers)
 - Final State (Collins).

(deconvolute specific effects in A_N) ... soon accuracy of 1%

2π fragmentation xsection(UT):

$$\begin{split} d^{9}\sigma_{OT} &= \sum_{a} \frac{\alpha^{2}e_{a}^{2}}{2\pi Q^{2}y} |\vec{S}_{T}| A(y) \left\{ \frac{|\vec{R}_{T}|}{M_{h}} \sin(\phi_{R} - \phi_{S}) \mathcal{I} \left[\frac{\vec{p}_{T} \cdot \vec{k}_{T}}{2MM_{h}} g_{1T} G_{1}^{\perp} \right] \\ &- \frac{|\vec{R}_{T}|}{M_{h}} \cos(\phi_{R} - \phi_{S}) \mathcal{I} \left[\frac{(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{P}_{h\perp} \wedge \vec{k}_{T}) - (\vec{k}_{T} \cdot \vec{P}_{h\perp})(\vec{P}_{h\perp} \wedge \vec{p}_{T})}{2MM_{h}} g_{1T} G_{1}^{\perp} \right] \\ &- \frac{|\vec{R}_{T}|}{M_{h}} \sin(2\phi_{h} - \phi_{R} - \phi_{S}) \mathcal{I} \left[\frac{2(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{k}_{L} \cdot \vec{k}_{L}) - \vec{p}_{T} \cdot \vec{k}_{T}}{2MM_{h}} g_{1T} G_{1}^{\perp} \right] \\ &- \frac{|\vec{R}_{T}|}{M_{h}} \cos(2\phi_{h} - \phi_{R} - \phi_{S}) \mathcal{I} \left[\frac{(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{P}_{h\perp} \wedge \vec{k}_{T}) + (\vec{k}_{T} \cdot \vec{P}_{h\perp})(\vec{P}_{h\perp} \wedge \vec{p}_{T})}{2MM_{h}} g_{1T} G_{1}^{\perp} \right] \\ &+ \sin(\phi_{h} - \phi_{S}) \mathcal{I} \left[\frac{\vec{p}_{T} \cdot \vec{P}_{h\perp}}{M} f_{1T}^{\perp} D_{1} \right] + \cos(\phi_{h} - \phi_{S}) \mathcal{I} \left[\frac{\vec{P}_{h\perp} \wedge \vec{p}_{T}}{M} f_{1T}^{\perp} D_{1} \right] \right\} \\ &+ \sum_{a} \frac{\alpha^{2}e_{a}^{2}}{2\pi Q^{2}y} |\vec{S}_{T}| B(y) \left\{ \sin(\phi_{h} + \phi_{S}) \mathcal{I} \left[\frac{\vec{k}_{T} \cdot \vec{P}_{h\perp}}{M_{h}} h_{1} H_{1}^{\perp} \right] \right. \\ &+ \left. \left[\frac{4(\vec{p}_{T} \cdot \vec{P}_{h\perp})^{2}(\vec{k}_{T} \cdot \vec{P}_{h\perp}) - 2(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{p}_{T} \cdot \vec{k}_{T}) - \vec{p}_{T}^{2}(\vec{k}_{T} \cdot \vec{P}_{h\perp})}{2M^{2}M_{h}} h_{1}^{\perp} H_{1}^{\perp} \right] \\ &+ \cos(3\phi_{h} - \phi_{S}) \mathcal{I} \left[\left(\frac{2(\vec{p}_{T} \cdot \vec{P}_{h\perp})^{2}(\vec{P}_{h\perp} \wedge \vec{k}_{T}) + 2(\vec{k}_{T} \cdot \vec{P}_{h\perp})(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{p}_{L} \wedge \vec{P}_{L})}{2M^{2}M_{h}} h_{1}^{\perp} H_{1}^{\perp} \right] \\ &+ \cos(3\phi_{h} - \phi_{S}) \mathcal{I} \left[\left(\frac{2(\vec{p}_{T} \cdot \vec{P}_{h\perp})^{2}(\vec{P}_{h\perp} \wedge \vec{k}_{T}) + 2(\vec{k}_{T} \cdot \vec{P}_{h\perp})(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{P}_{h\perp} \wedge \vec{p}_{T})}{2M^{2}M_{h}} h_{1}^{\perp} H_{1}^{\perp} \right] \\ &+ \frac{\vec{p}_{T}^{2}(\vec{P}_{h\perp} \wedge \vec{k}_{T})}{2M^{2}M_{h}} h_{1}^{\perp} H_{1}^{\perp} \right] + \frac{|\vec{R}_{T}|}{M_{h}} \sin(2\phi_{h} + \phi_{R} - \phi_{S}) \mathcal{I} \left[\frac{2(\vec{p}_{T} \cdot \vec{P}_{h\perp})^{2} - \vec{p}_{T}^{2}}{2M^{2}} h_{1}^{\perp} H_{1}^{\perp} \right] \\ \\ &+ \frac{|\vec{R}_{T}|}{M_{h}} \cos(2\phi_{h} + \phi_{R} - \phi_{S}) \mathcal{I} \left[\frac{(\vec{p}_{T} \cdot \vec{P}_{h\perp})(\vec{P}_{h\perp} \wedge \vec{p}_{T})}{2M^{2}} h_{1}^{\perp} H_{1}^{\perp} \right] \right\}$$

After integration over $\mathsf{P}_{\mathsf{h}}\!\!\perp$

 $\sigma_{UT} \propto \sum_{q} e_q^2 \sin(\phi_{R\perp} + \phi_S) h_1 H_1^{\triangleleft}$

Advantages:

- cross section asymmetry directly proportional to $h_1H_1^{\triangleleft}$ (No weighting needed)
- No Collins/Sivers 'entanglement'
- **9** Completely independent from 1π analysis

Disadvantages:

- Jess statistics
- H_1^{\triangleleft} unknown (but can be measured at Belle & Babar)

All the previous Spin dependent Fragmentation function analyses yields information on the Collins and the Interference Fragmentation function ! →Always 2 unknown functions involved which cannot be measured independently

- The *double ratio method* shows:
- Significant non-zero asymmetries
- Rising behaviour vs. z
- First direct measurement of the Collins function

Only first steps, however: "² Naïve LO analysis shows significant Collins effect

(Spin)-Structure of the Nucleon

GPDs and Exclusive Processes

GPDs are powerful objects :

- \cdot 3D structure of hadrons
- contain form factors
- contain structure fcts.
- angular momentum contribution to spin sum

GPDs and Exclusive Processes

 $^{10} Q^2$ (GeV²

8

Joint Working Groups: Spin Physics + Diffraction & VM

exclusive π^+

GPDs and Exclusive Processes (Th.)

(Spin)-Structure of the Nucleon

Gluon Polarization

Direct measurement of $\Delta G/G$ via open charm production has still too few events.

Measurement of $\Delta G/G$ via high Pt hadrons more powerful but model dependent

$$A_{\parallel} = R_{pgf} \langle \hat{a}_{pgf} \rangle \frac{\Delta G}{G} + \langle background \ asymmetry \rangle$$

2002+2003 data, $Q^2 < 1~{
m GeV^2}$

$$\frac{\Delta G}{G} = 0.024 \pm 0.089(stat.) \pm 0.057(syst.).$$

- either ΔG is small,
- either $\Delta G/G$ has to cross 0 around $x_G = 0.1$.

Gluon Polarization

New silicon VTX will increase the x range coverage for ΔG

The nucleon puzzle is to be completed ...

Future: Transversity in DY

Future: Transversity in DY

SSA & transversity (Th.)

new NLO results: single-incl. hadrons:

at RHIC energies: much improved scale dep. but small asymmetries

Spin physics is a very active field

Many experimental results and theories

High precision measurements (other just around the corner)

New dedicated experiments and detectors

Stimulating discussion ... including homework

