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We propose a method to determine the running of 
αQED 

from the measurement of small-angle Bhabha 
scattering

  

The method is suited to high statistics experiments 
at e+e− colliders, which are equipped with 

luminometers in the appropriate angular region 

We present a new simulation code predicting small-
angle Bhabha scattering   



The electroweak Standard Model SU(2) ⊗ U(1) contains 
Quantum Electrodynamics QED as a constitutive part. 

The running of the electromagnetic coupling 

αQED(q2)
is determined by the theory as  

αQED(q2) = αQED(0) /1 − ∆α(q2)
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αQED(0) = α0

“fine structure constant” 



arises from quantum loop contribution to the photon
      propagator receiving contributions from quarks (hadrons), leptons

and gauge bosons
 

The hadronic contribution is estimated in the s channel with a dispersion 
integral

from the cross-section e+e- to hadrons cross-section  

• the running of α is studied using small-angle Bhabha scattering 

• This process provides unique information on the QED coupling 

constant α at low space-like momentum transfer t = −|q2| in the t 
channel, with        t = − (1/2 )s (1 − cos θ)   for example for                                                 

!"(q2) Vacuum polarization

Here we follow an alternative approach:
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The method to measure the running of α 
exploits the fact that the cross section for the process e+e−→e+e− can be 

conveniently decomposed into three factors:  

 

• The Bhabha Born cross section, including soft and virtual photons is 
precisely known and accounts for the strongest dependence on t

•  The vacuum-polarization effect in the leading photon t-channel 
exchange is incorporated in the running of α and gives rise to the 
squared factor 

• ∆r(t) collects all the remaining real (in particular collinear) and virtual 
radiative effects not incorporated in the running of α

• The experimental data (after correction for detector effects) have to be 
compared with this distribution



The precise determination of the luminosity at e+e- colliders is a crucial ingredient to 
obtain an accurate evaluation of all the physically relevant cross sections. 

They necessarily have to rely on some reference process, which is usually taken to be the 
small-angle Bhabha scattering. 

Given the high statistical precision provided by the LEP collider, an equally precise 
knowledge of the theoretical small-angle Bhabha cross section is mandatory. In the 1990’s 

the substantial progress in measuring the luminosity reached by the LEP machine has 
prompted several groups to make a theoretical effort aiming 

at a 0.1% accuracy.

 This goal has indeed been achieved by developing a dedicated strategy. 
For the first time small-angle Bhabha scattering was evaluated analytically, following a 

new calculation technique that yields the required precision
                                                                                    Arbuzov,Fadin,Lipatov,Merenkov,Kuraev,T.(1995)
                                                                                                                                                                                                    Nucl.Phys.B485(1997)457 

Analytical calculations have been combined with Monte Carlo programs in order to 
simulate realistically the conditions of the LEP experiments

 
LABSMC                     NLLBHA                    SAMBHA

BHLUMI

An even better accuracy can be reached once the complete two-loop Bhabha 
(including α constants) cross-section will be computed

The Luminosity measurement







For the present investigation of the small-angle Bhabha cross section only the 
correction consistently needed to maintain the required accuracy are kept 

All these corrections are included in the new code SAMBHA

All the following contributions have been proved to be negligible and are 
dropped: 

• Any electroweak effect beyond the tree level, for instance appearing in 

boxes or vertices with Z0 and W bosons, running weak coupling, etc. 

• Box diagrams at order α2 and larger 

• Contributions of order α2 without large logarithms, leading from order α4 

(i.e. α4L4) and subleading higher order (α3L2, α4L3, ...) 

• Contributions from pair-produced hadrons, muons, taus and the 
corresponding virtual pair corrections to the vertices (estimated to be of the 

order of 0.5×10-4)
 



Future Linear Collider



The new code SAMBA



BHLUMI is compared with SAMBHA for integral and, 
for the first time 

also
differential distributions

 The actual measurements are of calorimetric type
 Therefore, event samples are generated with both programs, subjecting each event to a 

common set of calorimeter-like criteria  (CALO) 

ρ(t) = (dσsambha/dt − dσbhlumi/dt) /dσbhlumi/dt 

Comparison of SAMBHA with BHLUMI
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Calorimetric type measurement

Forward

Backward

1.The cluster is reconstructed
2. Find the cluster center

3. The highest energy cluster in each emisphere F, B
4. Energy Cuts (suppresses the Initial State Radiation) min(EF,EB)>0.65 Ebeam   

                                                                          Max(EF,EB)>0.95 Ebeam
5.Take the angle of the center of the most energetic cluster: this defines     

6.Repeat this procedure for several “rings” segmented detector to reproduce the differential 

distribution 

e+ e-

!

!

rings



Comparison  and evaluation





Final formula:

Which can be transformed in a linear fit defining the t dependence  of      :!

!n0

n0

= 10
−3 statistical precision



More formulae:



Linear Collider

Let us consider the case of a e+e- collider with
Ec.m.from 500 to 1000 GeV

The acceptance angles for the Luminosity determination are:

! <  7.201.80<

The min and Max values for t= -Q2

can be readily estimated



91GeV 189GeV 500GeV 1000GeV
1,00

800,82

1.600,64

2.400,46

3.200,28

4.000,10

Q**2min(GeV**2) Q**2MAX(GeV**2)

1.8 deg<angle<7.2 deg
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Q2
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linear collider



E_CM [GeV]

Q**2 
[GeV**2]

ang_min=1.8 deg
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Table 3: Numbers of events generated with BHLUMI

√
s(GeV) 91.2 189 200∫ Ldt (pb−1) 75 150 200

Ring 2 1844850 863571 1028210
Ring 3 907754 425586 506131
Ring 4 513696 240550 286994
Ring 5 313218 146731 174740
Ring 6 201893 94033 112168

SAMBHA. In order to extract the t dependence of α(t), eq. 3 is evaluated for each ring Ri defined by
the geometry of the DELPHI luminometer. Equation 3 then reads, for ring i :

σi = σ0
i

(
α(ti)

α(0)

)2

(1 + ∆ri), (7)

with the following definitions :

σi =

∫ Ri

dt
dσ

dt

σ0
i =

∫ Ri

dt
dσ0

dt(
α(ti)

α(0)

)2

=

∫ Ri dt

tmax − tmin

(
α(t)

α(0)

)2

,

1 + ∆ri =

(
α(0)

α(ti)

)2 σi

σ0
i

Table 4 contains the resulting theoretical values.
Putting together the experimental and theoretical ingredients, i.e. the observed number of events

Ni in each ring, together with the relevant luminosities
∫ Ldt (from table 3) and σ0

i , ∆ri (from table 4),
we obtain the final formula: (

α(ti)

α(0)

)2

=
Ni

σ0
i

∫ Ldt

1

1 + ∆ri
, (8)

which can be exploited in a linear fit to access the parameters defining the t dependence of α :(
α(t)

α(0)

)2

= (u0 ± δu0) + (u1 ± δu1) · log
−t

〈−t〉 (9)

The parameters of the fit are listed in table 5.

6 Discussion

Table 5 demonstrates that for the case of the DELPHI setup (see sect. 5) and assuming typical
integrated luminosities, the statistical accuracy is sufficient to verify the running of α for each of the
three centre-of-mass energies.

Equation 8 can be expanded in terms of ∆α (see eq. 1). It is convenient to consider

Ni

σ0
i

1

1 + ∆ri
= n0 + n1 log

−ti
〈−t〉 (10)
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Table 4: Theoretical predictions for each ring of the three factors of eq. 7. For the conditions defined
in sect. 5.1 the angular boundary of ring i is θi=arctan (7+3(i-1))/220).

No. of ring 1 2 3 4 5 6 7√
s = 91.2 GeV

σ0
i 63.077 24.728 12.170 6.8694 4.2517 2.8120 1.9552(

α(ti)/α(0)

)2

1.0425 1.0475 1.0516 1.0551 1.0582 1.0609 1.0634

1 + ∆ri 0.9426 0.9440 0.9412 0.9395 0.9240 0.8915 0.7982√
s = 189 GeV

σ0
i 14.685 5.7563 2.8324 1.5984 0.9889 0.6537 0.4542(

α(ti)/α(0)

)2

1.0554 1.0613 1.0661 1.0702 1.0736 1.0767 1.0794

1 + ∆ri 0.9377 0.9390 0.9360 0.9329 0.9165 0.8858 0.7898√
s = 200 GeV

σ0
i 13.115 5.1406 2.5295 1.4274 0.8831 0.5838 0.4057(

α(ti)/α(0)

)2

1.0565 1.0625 1.0673 1.0714 1.0749 1.0780 1.0807

1 + ∆ri 0.9376 0.9387 0.9352 0.9330 0.9158 0.8847 0.7896√
s = 1000 GeV

σ0
i 0.5248 0.2059 0.1014 0.0573 0.0356 0.0236 0.0165(

α(ti)/α(0)

)2

1.0921 1.0994 1.1050 1.1096 1.1135 1.1169 1.1199

1 + ∆ri 0.8622 0.8620 0.8590 0.8545 0.8398 0.8084 0.7205√
s = 3000 GeV

σ0
i 0.0590 0.0234 0.0117 0.0067 0.0042 0.0028 0.0020(

α(ti)/α(0)

)2

1.1192 1.1267 1.1325 1.1373 1.1414 1.1448 1.1479

1 + ∆ri 0.8467 0.8457 0.8422 0.8381 0.8253 0.7956 0.6975

rather than eq. 8, since in practice the integrated luminosity
∫ Ldt is not known. The two coefficients

n0 and n1 are obtained from a linear fit and contain the information on both the data and theory.
Their interpretation is :

n0 =

∫
Ldt ·

(
1 + 2∆α(〈t〉)

)
n1 =

∫
Ldt ·

(
d

d log(−t)
2∆α(t)

)
.

The dependence on the integrated luminosity is given explicitly: obviously, one has ni = ui ·
∫ Ldt by

comparing eqs. 8, 9,10.
In the ratio n1/n0 the dependence of the integrated luminosity drops out :

d

d log(−t)
∆α =

n1

2n0

(
1 + 2∆α(〈t〉)

)
The slope d∆α/d log(−t), the quantity of interest, is then directly given by the ratio of the two
experimentally measured quantities n0 and n1, namely n1/2n0. The contribution of 2∆α(〈t〉) is small
with respect to 1 and can be neglected. The accuracy of the slope is determined by δn1/2n0, i.e.
about 10% (see table 5), which is far smaller than the absolute value of n1/2n0.
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Table 5: Table of fit results; the uncertainties δu0 and δu1 are uncorrelated.

√
s 91.2 GeV 189 GeV 200 GeV

u0 1.0573±0.0005 1.0698±0.0008 1.0703±0.0007
u1 0.0242±0.0028 0.0284±0.0041 0.0318±0.0038
〈−t〉 8.5 GeV2 36.6 GeV2 40.9 GeV2

On the other hand, n0 relates the integrated luminosity to ∆α at the average value of t∫
Ldt =

n0

1 + 2∆α(〈t〉)
Making use of ∆α(〈t〉) as a priori knowledge the fitted n0 can be used to derive the integrated lumino-
sity, which is the standard procedure. The statistical precision is given by δn0/n0, which is of the
order of 10−3.

In addition, the hadronic contribution to ∆α(t) (see fig. 2) may be deduced by subtracting the lep-
tonic contribution, which is theoretically known precisely. The extraction of the hadronic contribution
is only limited by the experimental precision.

7 Conclusions

A novel approach to access directly and to measure the running of α in the space-like region is proposed.
It consists in analysing small-angle Bhabha scattering. Depending on the particular angular detector
coverage and on the energy of the beams, it allows a sizeable range of the t variable to be covered.

The feasibility of the method has been put in evidence by the use of a new tool, SAMBHA , to
calculate the small-angle Bhabha differential cross section with a theoretical accuracy of better than
0.1%.

The information obtained in the t channel can be compared with the existing results of the s
channel measurements. This represents a complementary approach, which is direct, transparent and
based only on QED interactions and furthermore free of some of the drawbacks inherent in the s
channel methods.

The method outlined can be readily applied to the experiments at LEP and SLC. It can also be
exploited by future e+e− colliders as well as by existing lower energy machines.

An extremely precise measurement of the QED running coupling ∆α(t) for small values of t may
be envisaged with a dedicated luminometer even at low machine energies.
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Table 3: Numbers of events generated with BHLUMI

√
s(GeV) 91.2 189 200∫ Ldt (pb−1) 75 150 200

Ring 2 1844850 863571 1028210
Ring 3 907754 425586 506131
Ring 4 513696 240550 286994
Ring 5 313218 146731 174740
Ring 6 201893 94033 112168

SAMBHA. In order to extract the t dependence of α(t), eq. 3 is evaluated for each ring Ri defined by
the geometry of the DELPHI luminometer. Equation 3 then reads, for ring i :

σi = σ0
i

(
α(ti)

α(0)

)2

(1 + ∆ri), (7)

with the following definitions :

σi =

∫ Ri

dt
dσ

dt

σ0
i =

∫ Ri

dt
dσ0

dt(
α(ti)

α(0)

)2

=

∫ Ri dt

tmax − tmin

(
α(t)

α(0)

)2

,

1 + ∆ri =

(
α(0)

α(ti)

)2 σi

σ0
i

Table 4 contains the resulting theoretical values.
Putting together the experimental and theoretical ingredients, i.e. the observed number of events

Ni in each ring, together with the relevant luminosities
∫ Ldt (from table 3) and σ0

i , ∆ri (from table 4),
we obtain the final formula: (

α(ti)

α(0)

)2

=
Ni

σ0
i

∫ Ldt

1

1 + ∆ri
, (8)

which can be exploited in a linear fit to access the parameters defining the t dependence of α :(
α(t)

α(0)

)2

= (u0 ± δu0) + (u1 ± δu1) · log
−t

〈−t〉 (9)

The parameters of the fit are listed in table 5.

6 Discussion

Table 5 demonstrates that for the case of the DELPHI setup (see sect. 5) and assuming typical
integrated luminosities, the statistical accuracy is sufficient to verify the running of α for each of the
three centre-of-mass energies.

Equation 8 can be expanded in terms of ∆α (see eq. 1). It is convenient to consider

Ni

σ0
i

1

1 + ∆ri
= n0 + n1 log

−ti
〈−t〉 (10)
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Conclusions

• We propose a novel approach to access directly and to measure the 
running of αQED in the space-like region . 

• It consists in analysing small-angle Bhabha scattering. Depending on 
the particular angular detector coverage and on the energy of the 
beams, it allows a sizeable range of the t variable to be covered. 

• The feasibility of the method has been put in evidence by the use of a 
new tool, SAMBHA , to calculate the small-angle Bhabha differential 
cross section with a theoretical accuracy of better than 0.1%. 

• The information obtained in the t channel can be compared with the 
existing results of the s channel measurements. This represents a 
complementary approach, which is direct, transparent and based only 
on QED interactions and furthermore free of some of the drawbacks 
inherent in the s channel methods. 

• The method outlined can be readily applied to the experiments at LEP 
and SLC. It can also be exploited by future e+e− colliders as well as by 
existing lower energy machines. 

• An extremely precise measurement of the QED running coupling ∆α(t) 
for small values of t may be envisaged with a dedicated luminometer 
even at low machine energies. 





Table 1: Various cross sections in nb as a function of the centre-of- mass energy in GeV integrated
over the two angular ranges 45–110 mrad and 5–50 mrad. The index t denotes the contribution of the
corresponding t channel Feynman diagrams alone. The last columns are of interest for furture Linear
Colliders.

√
s (GeV) 91.187 91.2 189 206 500 1000 3000

45 mrad < θ < 110 mrad√〈−t〉 (GeV) 3.4 3.4 7.1 7.7 18.8 37.5 112.6
QED 51.428 51.413 11.971 10.077 1.7105 0.42763 0.047514
QEDt 51.484 51.469 11.984 10.088 1.7124 0.42809 0.047566
EW 51.436 51.413 11.965 10.072 1.7105 0.42871 0.049507

EW+VPt 54.041 54.018 12.743 10.745 1.8590 0.47303 0.055748
EW+VP 54.036 54.013 12.742 10.744 1.8588 0.47296 0.055742

5 mrad < θ < 50 mrad√〈−t〉 (GeV) 1.1 1.1 2.2 2.4 5.8 11.6 34.8
QED 4963.4 4962.0 1155.4 972.54 165.08 41.271 4.5857
QEDt 4963.5 4962.1 1155.4 972.57 165.09 41.272 4.5858
EW 4963.4 4962.0 1155.4 972.53 165.08 41.272 4.5885

EW+VPt 5075.0 5073.5 1190.6 1003.3 172.51 43.647 4.9603
EW+VP 5075.0 5073.5 1190.6 1003.3 172.51 43.646 4.9605

fermion-loop insertions into the virtual photon lines:

Π(t) =
α0

π

(
δt +

1

3
L − 5

9

)
+

(
α0

π

)2(1

4
L + ζ(3) − 5

24

)
+

(
α0

π

)3

Π(3)(t) + O
(

m2
e

t

)
,

where

L = ln
Q2

m2
e

, Q2 = −t, ζ(3) = 1.202

and where the leading part of the two-loop contribution to the polarization operator is taken into
account. The most significant part arises from the electrons and is L/3 − 5/9.

The O(α) and O(α2) leptonic vacuum polarization has been known for many years [17]. The third-
order (three–loop) leptonic contributions Π(3)(t) have recently been calculated [18]. In the Standard
Model, δt contains contributions from muons, τ -leptons, W -bosons and hadrons :

δt = δµ
t + δτ

t + δW
t + δH

t ,

δs = δt (t → s),

which means that δs is obtained from δt by substituting s by t, see ref. [10]. The contributions from

5
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