Status and first atmospheric neutrino results from MINOS

Jenny Thomas Seminar at DESY

University College London

- Introduction
 - Reason for this experiment
- Detector and Project Description and Status

Preview

- Far Detector is taking data (atmospheric v)
- Near Detector assembly has begun
- Data Analysis : Present
 - Detector Calibration has been demonstrated
 - Atmospheric neutrino measurements
- Data Analysis : Future
 - 5-10% measure of parameters
 - Important search for $\nu\mu$ to νe
- Whats next for neutrino physics?

• The neutrino mixing matrix looks like this:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

The matrix is Unitary ve,vµ,vτ are the weak eigenstates
v₁,v₂,v₃ are the mass eigenstates

• Super-K claim data suggests $v_{\mu}v_{\tau}$ only

$$\begin{split} P(\nu_{\mu} \to \nu_{\tau} \) &= U_{\mu 1}^{2} U_{\tau 1}^{2} + U_{\mu 2}^{2} U_{\tau 2}^{2} + U_{\mu 3}^{2} U_{\tau 3}^{2} \\ &+ U_{\mu 1} U_{\tau 1}^{*} U_{\mu 2}^{*} U_{\tau 2} K \left(\frac{\Delta m_{12}^{2}}{E} \right) \\ &+ U_{\mu 2} U_{\tau 2}^{*} U_{\mu 3}^{*} U_{\tau 3} K' \left(\frac{\Delta m_{23}^{2}}{E} \right) \\ &+ U_{\mu 3} U_{\tau 3}^{*} U_{\mu 1}^{*} U_{\tau 1} K'' \left(\frac{\Delta m_{31}^{2}}{E} \right) \end{split}$$

• Approximation that $v_e v_1$ not involved

 $P(\nu_{\mu} \to \nu_{\tau}) = U_{\mu 2} U_{\tau 2}^{*} U_{\mu 3}^{*} U_{\tau 3} K' \left(\frac{\Delta m_{23}^{2}}{E}\right)$

- Leading to the familiar (v.simplified) equation
 - $\mathbf{P}(\nu_{\mu} \rightarrow \nu_{\tau}) = \mathrm{Sin}^2 2\theta \, \mathrm{Sin}^2 (1.27 \Delta m_{23}^2 \, \frac{\mathrm{L}}{\mathrm{E}})$
- Super-K gives measure of $\Delta m^2 = 3x10^{-3}eV^2$
- Sin²2θ ~ 1
- Combination SNO/Kamland gives measure of $\Delta m^2 = 5 \times 10^{-5} eV^2$, Tan² θ_{12} large

• MINOS will measure $v_{\mu} v_{\tau}$ and limit v_e content and *presumably* Δm_{23}^2

The NuMI/MINOS Project Description and Status

•

- NuMI beam comes off the main injector
- Protons impinge on carbon pencil target producing pions
- Pions are made parallel with double horn arrangement
- Allows beam energy to be selected
- We will start with low energy beam <E>=3GeV

By moving the horns and target, different energy spectra are available using the NuMI beamline. The energy can be tuned depending on the specific oscillation parameters expected/observed.

ntraduation

Steel installed in the Target Pic

450

Forget pit with installed steel in center of phase

4507

MINOS Detektoren

Es gibt 3 MINOS Detectors
Nah Detektor @ FNAL (ND)
Fern Detektor @ Soudan (FD)
Kalibrations Detektor @ CERN (CalDet)

MINOS Far Detector

MINOS Near Detector

- 200 planes (14m long)
- measures $v_e (\sim 5 \times 10^{-3})$
- Near Det offset wrt beam
- Use to measure energy spectrum and predict that in FD
- Rate in ND is high: ~100 events per spill!
- Electronics different from FD
- Spectrometer section

MINOS Near Detector

MINOS Near Detector

17

First Near Detector Plane (Installed 3/31/04)

MINOS Detectors

 Modules read out with Hamamatsu M16 and M64 PMTs

Another Typical M64 Spectrum

Calibration Detector

- CalDet has been used to verify performance of sub-systems
 - Light Injection system
 - Calibration chain
 - System Stability
 - PMT response
 - ND vs FD electronics
 - Input for pattern recognition algorithms

Calibration Detector

- One small difference
- One side 4m
 green WLS fibre
- Apes a bigger detector

CalDet Physics Analysis

- CalDet data measures calorimetric response to pions and protons separately using TOF and Cerenkov systems
- ToF separates π ,p up to 3.5GeV, Cerenkov up to 10 GeV
- Electron anti-ID with good efficiency: ~no e > 6GeV
- Discrepancy between Geant 3 and 4 for π ,p

CalDet Data Analysis

CalDet Data Analysis

Mean 22.93

RMS 7.4

dean 19.8

RMS 7.7

fean 23.37

RMS 7.26

Strips Hit

Mean 0.01

RMS 3.16

dean -0.0 RMS 2.9

dean -0.0

RMS 3.3

10

100

 Example of how CalDet data will be used in the future:

- CalDet data show clear preference for **GCALor** hadronic shower modelling over **GEANT-3**
- Understood because GCALOR has more detailed data, **GEISHA** an extrapolation

Detector Calibration

 \odot

Data Analysis

- Exploitation has already begun:
 - Calibration of the Detectors
 - Paramount to measuring the oscillation parameters
 - How do you know you have the same energy scale in both detectors?
 - Simple arguments demand 5% absolute, 2% relative
 - Non-trivial job, needs muons, LI system and CalDet data
 - Atmospheric Neutrinos
 - MINOS has unique capabilities in this arena
 - First measurement of sign selected oscillation will come from MINOS

Calibration

- Need first to calibrate Calibration Detector!
- Light Injection system used to take out PMT gain
- Strip to strip variations normalised using cosmic rays
- Final energy scale (Muon Energy Units, or MIPs) determined by beam muons of given energy
- Idea is to select similar muons (e.g. stopping cosmics) in the FD and ND
- Finally, CalDet provides MIP to GeV conversion

Calibration

• Light Injection System

- Injects light of known and variable intensity into the PMTs via the WLS fibres
- Hardware has been delivered to Far Detector, Near Detector and Calibration Detector
- Demonstrated to work (at 19 level), invaluable debugging tool

PMT Gains taken out to 1% with LI

Calibration

- Cosmic ray muons taken in special runs
- Muon Energy Unit (MEU) universal unit (different in all detectors due to different energy distribution)
- Green side and clear side give markedly different light output
- Great to demonstrate calibration is working

NOTHINGING OUTCOLED ADD

Cross Detector Calibration

- Using stopping muons, plot muon range vs total energy deposited in detector
- Two different slopes due to difference between stopping µ energy scale, and cosmic energy scale
- Find the scale between strip-to-strip calibration across all detectors
- CalDet gives you GeV!

Total Muon Energy Deposited v Range

ND FD Comparison

- ND and FD have different electronics, readout
- Viking FD, QIE ND
- Cannot afford ANY unknown systematic differences
- Comparison at CalDet of ND and FD readout on same events was invaluable to measure differences
- Less than 1% observable difference

Atmospheric Neutrinos

This is very very preliminary

Atmospheric Neutrino Analysis -

• MINOS now in a unique position to discriminate μ^+ from μ^- atmospheric neutrino events (B=1.5T)

MINOS Far Detector: Status

- FD is taking data with field on
- Measure charge and momentum from 0.5-70GeV/c : measure Ev for all events, for L/E
- Use timing and topology for event direction
- Distinguish v from anti-v for $p\mu$ >1GeV

Number of events in 24 kT yearsNeutrinoAntineutrinoReconstructed contained vertex with muon620400Reconstructed upgoing muon280120

Upward going muons

 Atmospheric neutrino MC fits the data very well
 This was developed on MACRO

Physics with beam neutrinos

 \odot \odot

Near Detector Measurements -

- Near Detector provides the unoscillated 'control sample' of neutrinos to compare with Far Detector
- 200Kevents/Ton year unprecedented low energy neutrino sample for traditional neutrino physics
- Ambitious plan to collect and evaluate world's neutrino scattering data and provide tools for accessing database
- Initiated by MINOS, now a collaboration including Durham/PDG

Neutral Current ID

- NC events : background for some, denominator for others
- Positive ID of NC events : algorithms being developed.
- ANNs being studied for resolution of CC and NC events
- Triggering another challenge: work underway to turn off threshold during beam spill
- Increase efficiency for NC
 event detection

MINOS Physics Measurements -

Far Detector

Neutrino Beau

- $Ev = E\mu + Eh$ $\Delta p\mu / p\mu = 6\% - 20\%$ $\Delta E\mu / E\mu = 55\%$
- Comparison of ND and FD spectra give measurement of Δm^2 and $sin^22\theta$
- One little problem is that ND and FD beam ain't the same: Heavily relies on MC for the FD spectrum prediction

Near Detector

Horn

Decay Pipe

CC energy distributions Ph2le, 10 kt.yr.

Muon charged current analysis -

- E907 (MIP) will measure similar target and similar beam
- BUT, if not, what can we do?

- Main uncertainty comes from pion beam divergence
- Secondary hadron production models

Muon charged current analysis -

- Using muons alone (quasi elastic events) good parameter measurement is possible
- Different models make 5% difference (maximum)

■Using all muons: measure Δm^2 to ~20% , sin²20 to ~18%

Contained muons: measure Δm^2 to ~22% , sin²20 to ~20%

("worst case" errors from models)

Proton Intensity

- Proton Intensity is THE issue for ultimate success of MINOS
- Not part of MINOS project, but collaboration was asked to help
- PI improvement project now real

Proton Intensity

- Proton Intensity Project is real at FNAL
- ~\$20M to be spent over the next 'years'
- Three places to improve:
 - Reduce losses in the booster : max p batch is 5 10e12
 - Store more protons in the Main Injector
 - Barrier Stacking : progress but cycle time too slow
 - Slip Stacking : 2 4e12 slipped to 1 8e12
 - Improve MI ramp time
 - Any slipping will increase MI cycle time
 - Useful for new proton driver no matter what

NC Physics Measurements

- NC events not expected to exhibit a deficit in FD because they are independent of neutrino flavour.
- Actually, this is not true in a model with Sterile neutrinos
- Plot shows results relative to Super-K

Electron Charged Current Analysis

- Although MINOS not optimised for v_e ID, we do have some sensitivity
- We should be able to improve on Chooz by a factor of a few
- CalDet data will be used to study NC/ v_e separation

NC events that contaminate "interesting" electron event region

2-

P. Vahle, 2004/04/15

Electron charged current analysis

Mip Weighted Radius

Physics Measurements

• Sensitivity is determined by statistical fluctuation of the NC π^0 BG in the far detector. • Limit on U_{e3}^2 will scale like 1/sqrt(N) and is not limited by systematics for any realistic exposure.

• Limit can be further improved by removing high-energy tail from the NuMI beam and increased proton flux in later years.

• Ultimate MINOS limits ~3X better than here with 5 years

Recent Developments

- Major future effort will try to pin down $U_{e3}(\theta_{13})$
- If its big enough, look for CP violation
- Efforts (to be) proposed in Japan,Off-axis NuMI, BNL, GranSasso (from Frascati), Frejus (from CERN)
- Manpower for all these???

Recent Developments

- The fundamental type of neutrino will not be measured by long baseline experiments
- Neutrinos could be Majorana particles (particle=antiparticle) because they are neutral
- Plans for new, bigger Double Beta Decay experiments are being developed
- Should push limits on Majorana mass down to 0.01-0.05eV :
- Maybe its been found already?

ββ0ν decay: Feynman's diagram

Future Plans

- NuMI beam will turn on late 2004
- MINOS will take atmospheric neutrino data until beam start end of 2004
- First measurement of +/- upward going muons with magnetic field of MINOS
- ~10-20% measurement of mixing parameters within 2 years of turn on (by end 2006)
- The next few years will undoubtedly be an exciting time for neutrino physics!