July 15th, 2003 DESY

New results from the ZEUS Experiment

Juan Terrón (Universidad Autónoma de Madrid, Spain)

\Rightarrow 51 Abstracts sent to EPS 2003

- → Structure Functions Searches for New Physics
- \rightarrow Heavy Quarks
- Diffraction
- → Hadronic Final States

Abstracts from ZEUS to EPS 2003

\Rightarrow 51 Abstracts

- Final Results $\Rightarrow 13$
- New for this summer \downarrow

New for EPS $2003 \Rightarrow 15$

- light-cone wave function at HERA \rightarrow Measurement of the electromagnetic component of photon
- of J/Ψ mesons at HERA \rightarrow Measurement of proton-dissociative diffractive photoproduction
- \rightarrow Measurement of open beauty production in deep inelastic
- scattering at HERA using a D^* plus muon tag

Structure Functions

(specifically d) and the evolution of PDFs at high Q^2 0

10 -2

 10^{-1}

10 -2

10 -1

X

High-Q² Charged Current Cross Sections in DIS

J Terrón (Madrid)

Searches for New Physics

Search for lepton-flavour violation in τ production by ep collisions

 $e^+q_{\alpha} \rightarrow \tau^+q_{\beta}$ can be mediated by lepto-quarks (LQ) involved \rightarrow Discovery potential when higher-generation quarks are

ightarrow Signature: high-transverse momentum isolated au

balanced by a jet in the transverse plane

- Search in e^+p collisions ($\sqrt{s} = 318$ GeV) using 66 pb⁻¹
- \rightarrow Leptonic τ decay ($\tau \rightarrow l\nu_l \nu_{\tau}, l = e, \mu$)

 $e(\mu)$ and aligned with the lepton $E_T > 50$ GeV, isolated lepton, $P_T^{miss} > 15(20)$ GeV for

ZEUS

 \rightarrow Hadronic τ decay ($\tau \rightarrow$ hadrons ν_{τ})

to select pencil-like jets $\Rightarrow D > 0.9$ $P_T^{\tau} > 15$ GeV aligned with P_T^{miss} ; discriminant technique, $E_T > 50~{
m GeV}, P_T^{miss} > 12~{
m GeV}, au$ -jet candidate with

No candidate found (0.8 \pm 0.3 expected from SM backg.)

 $\Rightarrow 95\%$ C.L. limits

quarks

as a function of M_{LQ} (scalar and vector) $\gtrsim_{10}^{\frac{1}{2}}$

ightarrow comparison with low-energy experiments

• Resonant LQ production $(M_{LQ} < \sqrt{s})$

 \rightarrow limits on $\lambda_{eq_1} \cdot \sqrt{\beta_{\tau q}}$ (any q except t) $\overset{\mathbb{F}^{1}}{\overset{\mathbb{F}^{1}}}{\overset{\mathbb{F}^{1}}{\overset{\mathbb{F}^{$

= (a) ZEUS (prel.) e⁺p 99-00

x B_{τq}.

= (b) ZEUS (prel.) e⁺p 99-00

 $\tilde{S}_{1/2}^{L}$

excluded at 950 C.L.

 V_0^L, V_0^R

July 15th, 2003

Search for $W(\rightarrow jets)$ production

• Cuts were applied on $|\cos \theta^*|$ and y_e (ELEC) to

enhance the signal from W production

- Invariant mass spectra of the two highest E_T^{jet} jets
- \rightarrow still background dominated
- Estimation of the cross section for W production

using a binned χ^2 fit of the invariant mass spectra for signal and background to data in the mass window

 $\sigma(ep \rightarrow eWX) = 2.97 \pm 2.51 (\text{stat.})^{+1.75}_{-0.53} (\text{syst.}) \text{ pb} \ ^{10}$ $60 < M_{jj} < 130 \ {
m GeV} \rightarrow$

<u>೧</u>

ELEC

• 95% CL limit: $\sigma(ep \rightarrow eWX) < 8.3$ pb

10

20

8

60

ZEUS

* H

determined by the ZEUS NLO QCD fit (FFNS) \Rightarrow Input for future QCD fits of the p PDFs well described by NLO QCD calculations with the parametrisations of the proton PDFs as

* H

 $(x_{I\!\!P} < 0.01)$ reasonably well content (ACTW, set B) describe the data using NLO QCD *IP* PDFs with a large gluon and resolved-Pomeron (Ingelman, Schlein rapidity acceptance (Forward Plug Cal.) Two-gluon exchange (SATRAP, BJLW)

DESY

0.8

- predicted by the CS and CO models have a different p_T dependence ■ The J/Ψ helicity distributions Shape measurements \rightarrow less sensitive -0.5 0.5 . ა 0 (a) BKV (LO, CS) BKV (LO, CS+CO)
- to higher-order corrections (small uncert.) _1 \rightarrow stringent test of CS and CO models -1.5
- Luminosity 114 pb^{-1}

I N

● H1 96−00 (87 pb⁻¹)

1 N

- • H1 96-00 (87 pb⁻¹)

2.5

ы 5

4.5 5 pr (GeV)

0.1

0.2 0.3

0.4

0.5

0.6

0.7

0.8

z 0.9

• ZEUS (prel.) 96-00 (114 pb⁻¹)

^{-1.5} + • ZEUS (prel.) 96-00 (114 pb⁻¹)

-0.5

7

0.5

0

____ ნ

..... ВКV (LO, CS)

2 - BKV (LO, CS+CO)

<u></u>

20

the region 0.6 < z < 0.8 disfavours $ightarrow heta^*$ angle of μ^+ respect to z' \rightarrow Measured azimuthal distribution in $\lambda = +1$ (T polaris.), -1 (L polaris.) $1/\sigma \cdot d\sigma/d\cos heta^st \propto 1+\lambda\cos^2 heta^st$ (direction opposite to that of proton) Decay angular distributions in J/Ψ rest frame As a function of z for $p_T > 1 \text{ GeV}$ As a function of p_T for z > 0.4-1.5 -0.5 і. 5 0.5 | 2 0

of virtual photons $\gamma^*p o Xp$ with a

Measurement of diffractive dissociation

proton

proton

 $d\sigma^D_{\gamma^* p}/dM_X$ exhibits a behaviour similar to that of the total $\gamma^* p$ cross section: The measured diffractive cross section

 \rightarrow higher $x_{I\!\!P}$ values

23

e +

σ

DESY	
July 15th	
ı, 2003	

 $\rightarrow d\sigma_{ep \rightarrow eXp}/dx_L$ flat as a function of x_L up to 0.95 $Q^2 > 3~{
m GeV}^2,\,45 < W < 225~{
m GeV},\,x_L > 0.56,\,0 < p_T^2 < 0.5~{
m GeV}^2$ High-statistics study of the production of leading protons in DIS:

Leading-proton production in DIS

(the observed structure comes from the variation of the p_T range)

 \rightarrow Precise determination of the p_T^2 -slope versus x_L

 $\to d\sigma_{ep \to eXp}/dp_T^2$ fitted with a single exponential $\exp(-b \cdot p_T^2)$ in each bin of x_L (not a good representation for the differential cross section integrated over $x_L > 0.56$) \mathbf{x}^{L}

New Results from the ZEUS Experiment

26

New Results from the ZEUS Experiment

27

Hadronic Final States

Tagging quark and gluon jets to disentangle/study the underlying hard processes \rightarrow Gluon ("THICK") jets: jet shape $\Psi(r = 0.3) < 0.6$ and $n_{sbj}(y_{cut} = 0.0005) \geq 6$ ightarrow Quark ("THIN") jets: jet shape $\Psi(r=0.3)>0.8$ and $n_{sbj}(y_{cut}=0.0005)<4$

Qs v

gluons (<0.58>)

thick jets

hin jets

PYTHIA

remnant

photon

Substructure Dependence of Jet Cross Sections in Photoproduction

July 15th, 2003

Extraction of $\alpha_s(M_Z)$ from the measured of $\langle n_{sbj} \rangle (y_{cut} = 10^{-2})$ for $E_T^{jet} > 25$ GeV:

 $\alpha_s(M_Z) = 0.1202 \pm 0.0052 \text{ (stat.)} ^{+0.0060}_{-0.0019} \text{ (exp.)}$

+0.0065

-0.0053 (th.

J Terrón (Madrid) D	0.1 0	Jet cross sections (γp) th. uncert. Let substructure (NC, CC) QCD fit to Structure function	New Results from the ZEUS Experiment $ Determinations of \alpha_s(M_Z) by Z $
ESY	0.12		EU
July 15th, 2	0.14 α _s (M _Z)	 Inclusive jet cross sections in γp ZEUS (Phys Lett B 560 (2003) 7) Subjet multiplicity in CC DIS ZEUS (hep-ex/0306018) Subjet multiplicity in NC DIS ZEUS (Phys Lett B 558 (2003) 41) Jet shapes in NC DIS ZEUS prel. (Contributed paper to IECHEP01 NLO QCD fit ZEUS (Phys Rev D 67 (2003) 012007) Inclusive jet cross sections in NC DIS ZEUS (Phys Lett B 547 (2002) 164) Dijet cross sections in NC DIS ZEUS (Phys Lett B 507 (2001) 70) World average (S. Bethke, hep-ex/0211012) 	

Looking forward to the new data taking period

→ Rich programme \rightarrow Full (exhaustive) use of HERA I High precision

New Results from the ZEUS Experiment

Last Remarks