

BROOKHAVEN NATIONAL LABORATORY Outline

STAR / PHENIX
 Experiments

Polarized proton collider RHIC

Introduction

Tuesday Seminar, DESY Hamburg, 03/18/2003

NATIONAL LABORATORY

First RHIC SPIN results

Proton structure at EIC

Summary and Outlook

Bernd Surrow

RHIC SPIN PYSICS effort of colliding polarized protons complements on-going relativistic-heavy ion program (Au-Au, Au-d) at RHIC

RHIC SPIN Collaboration: Coordination of overall spin issues for RHIC accelerator and experiments (Spokesperson: Gerry Bunce)

- ⇒ RHIC accelerator spin group
- ⇒ RIKEN and RIKEN/BNL research center
- ⇒ STAR and PHENIX experiments (Spin physics working groups)
- ⇒ pp2pp experiment

- Cross-sections and Structure Functions (unpolarized)
- Quantify spin-averaged structure of proton in terms of F₂ and F₁:

 $\left(\frac{d^2\sigma}{dE'd\Omega}\right) = \frac{\alpha^2}{O^4} \left(\frac{E'}{E}\right) L_{\mu\nu}(l,q) W^{\mu\nu}(P,q)$

In terms of kinematic variables:

$$\left(\frac{d^2\sigma}{dydQ^2}\right) = \frac{2\pi\alpha^2 Y_+}{Q^4 y} \left[F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)\right]$$

 $Y_{\pm} = 1 \pm (1 - y)^2$

 F_2 : structure function F_2

QPM:
$$F_2 = x \sum_q e_q^2 [q(x) + \overline{q}(x)]$$

 $F_L = F_2 - 2xF_1$: long. structure function F_1
QPM: $F_L = F_2(x) - 2xF_1(x) = 0$

Quantify unpolarized structure of the proton! Unpolarized parton distribution function q(x)(momentum distribution) $q(x)=f^+(x)+f^-(x)$:

 $\mathbf{q}(\mathbf{x}) = \left| \underbrace{\overset{P_{1}+}{\longrightarrow}}_{X} \right|^{2} + \left| \underbrace{\overset{P_{1}+}{\longrightarrow}}_{X} \right|^{2}$

- Cross-sections and Structure Functions (polarized)
- Quantify spin structure of proton in terms of g_1 and g_2 :
 - Take difference of hadronic tensor: $W^{\mu\nu}(P,q,S) W^{\mu\nu}(P,q,-S)$
 - Specialize to lepton with helicity A and $\angle (\vec{l}, \vec{S}) \equiv a$

$$\left(\frac{d^2\sigma^{(\alpha)}}{dxdyd\phi}\right) - \left(\frac{d^2\sigma^{(\alpha+\pi)}}{dxdyd\phi}\right) = \frac{\lambda e^4}{4\pi^2 Q^2}$$
$$\cdot \left\{\cos\alpha \left\{ \left[1 - \frac{y}{2} - \frac{m^2 x^2 y^2}{Q^2}\right]g_1(x,Q^2) - \frac{2m^2 x^2 y^2}{Q^2}g_2(x,Q^2)\right\} - \sin\alpha\cos\phi \frac{2mx}{Q}\sqrt{\left(1 - y - \frac{m^2 x^2 y^2}{Q^2}\right)\left(\frac{y}{2}g_1(x,Q^2) + g_2(x,Q^2)\right)}\right\}$$

Quantify polarized structure of the proton!

 α

 \vec{S}

 \Rightarrow

⇒For a=0, g₁! ⇒For a= $\pi/2$, yg₁+2g₂ suppressed by m/Q!

 g_1 : structure function g_1

QPM:
$$g_1 = \frac{1}{2} \sum_q e_q^2 [\Delta q(x) - \Delta \overline{q}(x)]$$

Polarized parton distribution function $\Delta q(x)$ (longitudinal spin distribution) $\Delta q(x)=f^+(x)-f^-(x)$:

$$\Delta q(\mathbf{x}) = \left| \underbrace{P_{1} + \mathbf{x} + \mathbf{x} + \mathbf{x}}_{\mathbf{x}} \right|^{2} - \left| \underbrace{P_{1} + \mathbf{x} + \mathbf{x$$

- Quantum Chromodynamics (DGLAP fits of F₂ and g₁ data)
- NLO evolution according to DGLAP integro-differential equations:

 \Rightarrow F₂ results:

- Good description of F₂/g₁ data by NLO DGLAP fits!
- HERA collider data extended kinematic region towards larger Q² and low x for F₂ (scaling violation clearly seen!)
- g₁ limited by fixed target data at low Q² and high x

Limited range in x and Q^{2} !

4 orders of magnitude in Q^{2} !

- Quantum Chromodynamics (General structure of W^{µv})
- Considered so far only fully inclusive DIS: f(x) and $\Delta f(x)$ are accessible!
- General leading-twist structure of the proton (collinear approximation):

- Transversity cannot be probed in fully inclusive DIS (Helicity conservation, δf is chiral odd), but in hadron-hadron collisions or semi-inclusive lepto-production (Pair of chiral odd effects required, e.g. k₁- dependent Collins fragmentation $\otimes \delta f$)
- Additional distribution functions appear with inclusion of:
 - Quark transverse momentum k₁: six k₁ dependent distribution functions (leading twist)
 - Higher twist

 $\delta q(x) = \left| \begin{array}{c} P_{1}\uparrow & xP \uparrow \\ \hline \\ \hline \\ \hline \\ \end{array} \right| X \right|^{2} \left| \begin{array}{c} P_{1}\uparrow & xP \downarrow \\ \hline \\ \hline \\ \hline \\ \end{array} \right| X \right|^{2}$

- RHIC Spin program (e.g. ΔG)
- Fundamental question: How is the proton spin made up?

$$J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$$

⇒ SMC result: Fraction of proton spin carried by quarks is small:

 $\Delta \Sigma_{(AB)} = 0.38^{+0.03+0.03+0.03}_{-0.03-0.02-0.05} \text{ at } Q^2 = 1 \text{GeV}^2$

 ΔG and $(L_{-}^{q} + L_{-}^{g})$

\Rightarrow Where is the spin of the proton then?

⇒ SMC QCD-fit: $X \Delta \Sigma(X)$ x-∆g(x) 0.4 F11111 0.4 0.3 0.3 02 0.2 0.1 0.1 0 n -0.1 -0.1 -02 -0.2 -0.3 -0.3-0.4 -0.4 10⁻² 10⁻² 10⁻¹ 10⁻¹ 1 Х Х At present: △G is only poorly constrained from scaling violations in fixed target DIS experiments

> $\Delta G_{(AB)} = 0.99^{+1.17+0.42+1.43}_{-0.31-0.22-0.45} \text{ at } Q^2 = 1 \text{GeV}^2$ SMC, Phys. Rev. D58 (1998) 112002.

 Need: New generation of experiments to explore the spin structure of the proton: polarized proton collisions at RHIC which allows to access directly △G in polarized pp collisions!

RHIC spin program:

- Unique multi-year program which has just started...!
- Explore various aspects of the spin structure of the proton in a new domain:
 - Spin structure of the proton (gluon polarization, flavor decomposition, transversity)
 - ⇒ Spin dependence of fundamental interactions
 - ⇒ Spin dependence of fragmentation
 - Spin dependence in elastic polarized pp collisions

Asymmetries

- ⇒ Measurement of asymmetries (A): Principle approach to study spin effects
- ⇒ Ultimately at RHIC, any combination of beam polarization (longitudinal (+/-) /transverse (↑/↓)) is possible, which allows to access different parts of the proton spin structure
- Double longitudinal-spin asymmetry:

- ⇒ Study helicity dependent structure functions!
- Single longitudinal-spin asymmetry:

⇒ Study parity violation effects!

• Double transverse-spin asymmetry:

- \Rightarrow Study transverse dependent structure functions!
- Single transverse-spin asymmetry:

⇒ Study left/right asymmetries!

- Statistical significance (FOM=figure-ofmerit):
- ⇒ Single spin asymmetry:

ONAL LABORATOR'

 $\Rightarrow \text{ Double spin asymmetry: } P^4 \cdot \int Ldt$

- Experimental and theoretical remarks on A_N
 - Basic, "naive QCD calculations" (leading-twist, ignore masses of quarks) predict: A_N=0
 - Non-zero values of A_N have been observed at the FNAL experiment E704 for:

$$\vec{p} + p \rightarrow \pi^0 + X$$

 \sqrt{s} = 20 GeV (10 X smaller than at RHIC), 0.5 < p_T < 2.0 GeV

- Does the E-704 effect persist to RHIC energies?
- Challenge to theory community to explain this measured effect!

 Several approaches beyond the basic "naive QCD calculations" yield non-zero A_N values at RHIC energies:

Tuesday Seminar, DESY Hamburg, 03/18/2003 **V**Z

- Measurement of A_N
 - Measurement of A_N for forward π^0 production:

 $\vec{p} + p \rightarrow \pi^0 + X$ Forward π^0 ($\pi^0 \rightarrow \gamma\gamma$) production

$$x_{F}$$
 (= $E_{\pi^{0}}/E_{beam}$) ~ 0.1 - 0.6 and p_{T} ~ 1 - 4 GeV

• Asymmetry:

$$\varepsilon = PA_N = \frac{N_{\uparrow}/L_{\uparrow} - N_{\downarrow}/L_{\downarrow}}{N_{\uparrow}/L_{\uparrow} + N_{\downarrow}/L_{\downarrow}} = \frac{N_{\uparrow} - R \cdot N_{\downarrow}}{N_{\uparrow} + R \cdot N_{\downarrow}}$$

- Determination of A_N requires three measurements:
 - 1. Spin dependent event yield: $N_{\uparrow(\downarrow)}$
 - 2. Relative luminosity: R=L_ $/L_{\downarrow}$
 - 3. Beam polarization: P
- A_N: DIFFERENCE over SUM In general quite small ⇒ Require therefore:
 - 1. Statistical precision
 - 2. Control of systematic effects

- Reconstruction of $\pi^{0} \rightarrow \gamma\gamma$ requires three basic measurements:
 - 1. Total π^0 energy: E_{tot}
 - 2. Energy sharing between two daughter photons: $z_{\gamma} = (E_{\gamma 1} E_{\gamma 2})/(E_{\gamma 1} + E_{\gamma 2})$
 - 3. Opening angle between two daughter photons: Θ_{yy}

$$\mathbf{M}_{\gamma\gamma} = E_{tot} \cdot \sqrt{1 - z_{\gamma}^2} \cdot \sin^2(\Theta_{\gamma\gamma} / 2)$$

- RHIC performance in FY02:
 - ⇒ Beam energy: 100 GeV
 - \Rightarrow Inst. luminosity: ~ 1 \cdot 10³⁰ s⁻¹ cm⁻²
 - ⇒ Integrated luminosity: ~ 0.3pb⁻¹
 - \Rightarrow Bunch crossing time: 213ns
 - ⇒ Polarization: ~ 0.2 at injection approximately maintained at 100GeV (transverse)

- Expected RHIC performance in FY03:
 - ⇒ Beam energy: 100 GeV
 - \Rightarrow Inst. luminosity: ~ 1 \cdot 10³¹ s⁻¹ cm⁻²
 - \Rightarrow Integrated luminosity: ~ 3 pb⁻¹ recorded at STAR (long. polarization)
 - ⇒ Bunch crossing time: 107ns
 - \Rightarrow Polarization: ~ 0.4 from AGS (trans. and long. at RHIC)

RHIC: Polarized pp facility

RHIC: Polarized pp facility

Spin pattern

- Different spin combination every 214 ns ⇒ reduce systematic errors
- ~47 polarization reversals before RHIC injection
- Because of snake magnets, same bunch has opposite polarization at IP6 and IP12
 ⇒ 5×10⁹ polarization reversals in RHIC for a ~10 hour store

- Spin Up
 Spin Down
 Unpolarized
 - Requires extremely careful timing adjustments for both RHIC and experiments
 - Essential to sort all data by which bunch pair interacts at experiments.

Upgrade of the STAR detector

Upgrade program of the STAR experiment for the first polarized proton collisions:

- Beam-Beam Counter (BBC):
 - ⇒ Relative luminosity measurement
 - ⇒ Rejection of beam-gas event in pp collisions
 - ⇒ Minimum bias trigger
 - \Rightarrow Beam tuning to make collisions at STAR
 - \Rightarrow Luminosity monitor
- Forward-Pion Detector (FPD)
 - ⇒ Electromagnetic calorimeter system: Prototype setup of 3 Pb-glass arrays and 1 Pb-scintillator calorimeter
 - \Rightarrow Energy and shower profile measurement ($\pi^0 \rightarrow \gamma\gamma$)
 - \Rightarrow Event yield for Forward π^0 production
- Commissioning of EM-calorimeter (Barrel) modules and trigger
- Commissioning of spin scaler system

Bernd Surrow

STAR Beam-Beam Counter (BBC)

- Hexagonal scintillator array structure at ±3.5m from IP:
 - ⇒ Inner annulus: inner (outer) diameter 9.6cm (48cm) of 18 pixels
 - ⇒ Outer annulus: inner (outer) diameter 38cm (193cm) of 18 pixels

- Singe scintillator tile:
 - ⇒ 1 cm thick scintillator
 - ⇒ 4 optical fibres for light collection
 - \Rightarrow ~ 15 photoelectron/MIP

STAR BBC luminosity monitoring

Forward-Pion Detector (FPD)

extensively tested at SLAC

• Measurement of forward π^0 production at RHIC

maximum detector and measured calorimeter energy serves as input to the π^0 mass determination! Clearly identified π⁰ ma peak!

NATIONAL LABORATORY

First results (STAR)

First measurement of A_N for forward π^0 production at RHIC

- Several approaches beyond the basic "naive QCD calculations" yield non-zero A_N values at RHIC energies:
- Sivers: include intrinsic transverse component, k_⊥, in initial state (before scattering takes place)
- ⇒ Collins: include intrinsic transverse component, k_⊥, in final state (after scattering took place)
- ⇒ Qiu and Sterman: more "complicated QCD calculations" (higher-twist, multi-parton correlations)
- A_N is found to increase with energy similar to E704 result
- This behavior is also seen by several models which predict non-zero A_N values

NATIONAL LABORATORY

FPD upgrade

- Physics motivation:
 - A_N measurement for $\vec{p} + p \rightarrow \pi^0 + X$ expect FOM to increase by factor 40!
 - Tuning of STAR spin rotator (Local polarimeter)
 - Gluon density in heavy nuclei: $d + Au \rightarrow \pi^0 + X$
- Acceptance:
 - Forward rapidity: 3 < n < 4
 - High $x_F: x_F > 0.2$
 - Moderate p_T: 1 < p_T < 4 GeV

- Access △G in polarized pp collisions
 - ΔG sensitivity in polarized pp collisions
 - \Rightarrow High-p_T (prompt) photon production
 - ⇒ Jet production
 - ⇒ Heavy-flavor production
- Access ΔG : Double longitudinal-spin asymmetry A_{LL}

- ⇒ Study helicity dependent structure functions!
- Measurement of A_{LL} requires:

FOM (= Figure-Of-Merit):

 $\Rightarrow \mathbf{A}_{\mathsf{N}}/\mathbf{A}_{\mathsf{L}}: P^{2} \cdot \int Ldt \qquad \Rightarrow \mathbf{A}_{\mathsf{LL}}/\mathbf{A}_{\mathsf{TT}}: P^{4} \cdot \int Ldt$

(

• Theoretical advantage of RHIC:

guark

state guark

- The golden channel at RHIC: Quark-Gluon Compton scattering
- A_{LL} for QGC scattering interpreted in LO QCD: $gq \rightarrow \gamma g$

Gluon polarization

olarization

Measured asymmetry pQCD result from polarized DIS for QGC scattering

 $q\bar{q} \rightarrow \gamma g$

- ⇒ Note: QGC scattering dominates over competing background process:
- Reconstruction of initial-state partonic kinematics:
- Event-by-event determination of p_{T,γ} (photon energy), η_γ (photon direction) and η_{jet} (jet direction) allows to reconstruct:

⇒ Polarized cross-section is

strongly peaked when photon is emitted in direction of incident

 \Rightarrow Best determination of ΔG for:

final-state photon || to initial-

Asymmetric QGC scattering (forward boost in direction of incident quark)

 $x_{1(2)} \cong rac{p_{T,\gamma}}{\sqrt{S}} \Big(e^{\pm \eta_{\gamma}} + e^{\pm \eta_{ ext{jet}}} \Big)$

$$\begin{aligned} x_q^{recon} &= \max[x_1, x_2] \\ x_g^{recon} &= \min[x_1, x_2] \end{aligned}$$

- Background:
- $\Rightarrow \pi^0(\eta^0) \rightarrow \gamma \gamma: \pi^0(\eta^0)/\gamma \text{ discrimination needed}$
- ⇒ Isolation cone requirement

- Quark-Gluon Compton scattering: Prospects at STAR
- Simulated A_{LL} at two different RHIC center-of-mass energies:

 \Rightarrow Combined data sample at 200 GeV and 500 GeV is essential to minimize extrapolation errors in determining ΔG :

$$\Delta G(Q^2) = \int_{0}^{1} \Delta g(x, Q^2) dx$$
 Accuracy: 0.5

 \Rightarrow Ultimately: Global analysis of various $\Delta G!$

- ⇒ Multi year program at RHIC which requires:
 - 1. High luminosity
 - 2. High polarization
 - 3. $\sqrt{s} = 200 / 500 \text{GeV}$

• Prospects on constraining ΔG from inclusive jet production in RUN III

- Simulation based on Pythia including trigger and and jet reconstruction efficiencies
- Assume: Coverage of EMC (barrel)
 ⇒ 0 < Φ < 2π and 0 < η < 1
- Jet Trigger: E_T > 5 GeV over at least one "patch" (Δη = 1) X (ΔΦ = 1)
- Jet reconstruction: Cone algorithm (seed = 1GeV, R = 0.7)

PHENIX

- Status during the first pp run
- Commissioning of spin scaler system and relative luminosity monitor
- Calorimeter components
 - Lead Scintillator (PbSc)
 - 6 sectors (15552 channels)
 - Lead Glass (PbGl)
 - 2sectors (9216 channels)
- Calorimeter coverage
 - |η| < 0.38
 - φ **= 180**°
- First run coverage:
 - $\phi = 45^{\circ} + 90^{\circ}$ are active
 - 2 sectors PbSc
 - 1 sector PbGl
- Crucial component for the first π⁰ production cross-section measurement in polarized pp collisions!

First results (PHENIX)

- **PHENIX** π^0 production cross section
 - Data covers over 8 orders of magnitude
 - $p_T = 1 13 \text{ GeV}/c$
 - based on combining minimum bias trigger and EMCal trigger data
 - NLO pQCD calculation is consistent with data
 - CTEQ5M PDF + PKK FF
 - with a scale variation: $\mu = p_T/2$ and $2p_T$
 - ⇒ Confidence in understanding subprocesses
 - Solid basis for future polarized pp asymmetry measurements

Local polarimeter development: IP12 => PHENIX test setup

Hamburg, 03/18/2003

Asymmetry results

Hamburg, 03/18/2003

PHENIX

- Flavor decomposition
 - Explore spin structure of sea is crucial:
 - Is polarization of sea shared by quarks and anti-quarks?
 - Is there any flavor dependence?
 - W[±] production in pp collisions probes flavor structure analogous to deep-inelastic scattering
 - Polarized proton beams allow the measurement of (the expected large) parity violation in W[±] production
 - Forward e/µ detection gives direct access to probe the underlying quark (anti-quark) polarization which is dominated at RHIC by u/d quarks

Tuesday Seminar, DESY Hamburg, 03/18/2003

Bernd Surrow

STAR/PHENIX spin physics topics

Topics

- Gluon polarization
 - Direct photon (STAR/PHENIX) + jet production (STAR)
 - Hadron production (STAR/PHENIX)
 - Inclusive jet production and di-jet production (STAR)
 - Heavy-flavor production (STAR/PHENIX)
- Quark/Anti-quark polarization and flavor decomposition
 - W production (STAR/PHENIX)
- Transversity and transverse spin effects
 - Single-transverse spin asymmetries (STAR/PHENIX)
 - Transversity via Drell-Yan (PHENIX)
- Physics beyond the SM
 - Varity violating asymmetries (STAR/PHENIX)

New opportunities in SPIN physics!

STAR/PHENIX spin physics timeline

Timeline

- FY02:
 - First polarized proton run and
 - First polarization observable measurement at RHIC in transverse polarized pp collisions
- FY03:
 - Continue with measurements on transverse-single spin asymmetries with upgraded STAR FPD
 - Confirm tuning of spin rotator magnets via absence of left/right and up/down spin asymmetries (STAR/PHENIX)
 - A_{LL} for mid-rapidity inclusive jet production (STAR) and hadron production (PHENIX) as a first probe on the gluon polarization at RHIC
 - Continue commissioning of RHIC for polarized proton running (L = 10³¹ cm⁻²s⁻¹ and P = 0.4)
- FY04:
 - Installation of polarized gas jet target for CNI polarimeter calibration
 - Commissioning of $\int s = 500$ GeV and first run
- FY05 and beyond:
 - Strong snake in AGS for improved polarization
 - Improved luminosity
 - Embark on γ and W physics and heavy flavor production

Tuesday Seminar, DESY Hamburg, 03/18/2003 Completion and upgrade of STAR/PHENIX

General comments on a future Electron-Ion Collider (EIC)

- Explore new QCD regime in eA scattering and polarized ep scattering in collider mode beyond the fixed target DIS era
- Complement current physics program at RHIC (AA/pp \Rightarrow eA/ep)

- Essential features for new EIC facility:
 - High luminosity: > 10³³ cm⁻² sec⁻¹
 - High polarization: ≈ 70%

 - High energy: E_e ≈ 10 GeV, E_p ≈ 250GeV Variable center-of-mass energy: 25 60 GeV
 - Optimal detector for physics to be explored at EIC (Lessons from HERA!)

EIC

NATIONAL LABORATORY

Physics program

- Unpolarized ep scattering:
 - Longitudinal structure function F_L
 - Flavor separation
 - Precise direct measurement of the gluon (0.001 < x < 0.5-1)
 - Exclusive reactions
 - Transition region ($Q^2 \rightarrow 0$)
- Polarized ep scattering:
 - Polarized structure function of the proton
 - Gluon polarization (Complement effort at RHIC, COMPASS, HERMES)
 - Exclusive reactions
 - Deeply-virtual Compton scattering (Orbital angular momentum of quarks)
- eA scattering:
 - Influence of nuclear medium within nucleon/nucleus: F_2^A/F_2^D
 - Gluon distribution within nucleus
 - Parton saturation at low-x

EIC

Requirements on a future EIC detector

- Basic requirements:
 - Measure precisely scattered electron (Kinematics of DIS reaction)
 - Tag electrons under small angles (Study of transition region)
 - Measure hadronic final state (Kinematics, jet studies, flavor tagging, fragmentation studies)
 - Zero-degree photon detector to control radiative corrections
 - Missing E_{T} for events with neutrinos in the final state
 - Tagging of forward particles (Diffraction)

GEANT detector simulation work has started!

NATIONAL LABORATORY

Past:

- Series of workshops
- Before 2001:
 - Indiana/MIT: EPIC
 - eRHIC
- Merge to EIC: EIC = eRHIC + EPIC (Sept. 2000)
- White paper (March 2001)
- EIC workshop (Febr. 2002)
- Result of submission: NSAC 2002/2003: Formal project in long-range plan

Present:

- Next large-scale project at BNL beyond RHIC
- Beam cooling for RHIC already within EIC machine budget
- Strong intention to have a dedicated EIC group at BNL from 2004 onward
- WWW-page: http://www.bnl.gov/EIC

Future:

- Series of CDR's (CDRO: 2005) (rough institutional responsibility and interests, functionality of detector)
- Start of construction (CDR3=TDR) in 2008

Summary and Outlook

- RHIC Spin program at BNL
 - First successful polarized proton collisions ever at RHIC
 - Successful upgrade and commissioning of various new STAR components for the first polarized proton run at RHIC
 - First measurement of single transverse-spin asymmetries A_N for forward π^0 production at RHIC (\Rightarrow Probe new domain in QCD)
 - Unique opportunity to explore the spin structure of the proton in a new unexplored regime at RHIC over the next years:
 - Gluon polarization
 - Flavor decomposition
 - Transverse spin effects and transversity
 - This requires various accelerator, polarimeter and detector components to be completed (High polarization and luminosity)!

Future EIC program at BNL

- Explore new QCD regime in eA (high parton density - saturation phenomena) and polarized ep scattering (complement ongoing RHIC physics activities)
- Unique opportunity to establish such a QCD facility at BNL!

A very exciting time is ahead of us to explore the spin structure of the proton at RHIC and to establish a new ep/eA facility at BNL!

