DIS 2004 Theory Highlights

Anna Staśto

DESY Hamburg & IFJ PAN Kraków

Overview

DIS2004, Strbskie Pleso, Slovakia, 14-18 April 2004. Six working groups:

- **Structure functions, low** x
- Diffraction and Vector Meson
- Hadronic Final States
- Heavy Flavors
- Electroweak and Physics Beyond SM
- Spin Physics

 $\sim 230 \ \mathrm{presentations}$

Available at:

http://www.saske.sk/UEF/OSF/DIS/sciprog.html

Selected topics

- Proton structure function: global fits
- Higher order calculations: NNLO splitting function
- BFKL Pomeron at non-zero temperature
- Dipole picture and saturation at low x
- Diffractive Higgs production
- Pentaquarks
- Heavy quark production
- Automated event shape resummation
- Matching MC with NLO
- Monte Carlo generators: Pythia and Herwig

Proton structure function: global fits

Good news: MRST analysis based on approximate NNLO splitting functions should be very accurate.

Careful analysis of pdf uncertainties using various methods.

Problems: MRST analysis shows that data require negative gluon at very low Q^2 .

Finds tension between HERA F_2 data and jets and NMC data.

Tests: Vary kinematic cuts W_{\min}^2 , Q_{\min}^2 , x_{\min} , and refit the data. Observe if the χ^2 changes, proceed until it stabilizes.

Cuts in Q^2 : raising cut from 2 to 10 GeV² leads to slow continuous improvement \rightarrow suggest that most corrections mainly higher order and not higher twist.

Cuts in x: continuous and significant improvement. Gluon becomes positive.

Two sets of partons: standard and conservative (higher cuts). Significant impact on the exclusive observables like rapidity distribution of W boson.

Prediction for F_L **structure function**

0.5

$Q^2 = 5 \text{ GeV}^2$ $O^2 = 2 GeV^2$ NLO fit 0.4 0.4NNLO fit resum fit LO fit ${\rm (c}_{\rm U}^{0.3}$ 0.3 Prediction for $F_L(x,Q^2)$ 0.2 LO,NLO,NNLO and at $\ln 1/x$ -resummed predic-0.1 0.1 tion (R.Thorne). 10^{-4} 10^{-3} 10^{-2} 10^{-1} 0 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-5} 10 0.5 0.5 $O^2 = 20 \text{ GeV}^2$ $Q^2 = 100 \text{ GeV}^2$ 0.4 0.4 ${\rm (}^{0.3}_{{\rm H}^{2}}{\rm (}^{0.3}_{{\rm H}^{2}}{\rm)}_{0.2}$ Desperate need of F_L mea-0.3 surement, which possibly could 0.2 discriminate between NNLO 0.1 0.1 and resummed predictions.

F_L LO, NLO and NNLO

0.5

DIS 2004 Theory Highlights - p.5/32

 $0 \frac{1}{10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}} \frac{10^{-1}}{10^{-1}}$

 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1

Splitting function at NNLO

A.Vogt: Complete results for next-to-next-to-leading order (NNLO) non-singlet and singlet splitting functions.

Small x limit of nonsinglet functions:

$$P_{(x\to 0)}^{i}(x) = D_0^{i} \ln^4 x + D_1^{i} \ln^3 x + D_2^{i} \ln^2 x + D_3^{i} \ln x$$

where

$$D_0^+ \simeq 1.58, \qquad D_1^+ \simeq 29.63 - 2.37n_f,$$
$$D_2^+ \simeq 295.04 - 32.20n_f + 0.59n_f^2, \qquad D_3^+ \simeq 1261.11 - 152.60n_f + 4.35n_f^2$$

Strongly increasing coefficients of small x terms.

New, unpredicted small x term in P_{ns}^s :

 $\sim d^{abc} d_{abc} n_c \alpha_s^3 \ln^4 x$

Splitting function at NNLO

Small x limit in singlet case:

$$P_{ab}^{(2)} = E_1^{ab} \frac{\ln 1/x}{x} + E_2^{ab} \frac{1}{x} + \dots$$

Small *x* terms E_1^{gg} , E_1^{gg} consistent with previous calculations: NLLx BFKL and Catani-Hautmann.

Exact values of P_{ab} within the error bands of the previous estimates.

One should not expect big differences from previous NNLO MRST estimates.

Splitting function at NNLO

Note: P_{gg} is negative

BFKL Pomeron at T > 0

Collision of heavy nuclei \rightarrow formation of quark-gluon plasma

Parton-parton scattering leads to thermalisation of plasma

The confining potential between $q\bar{q}$ disappears, which leads to J/Ψ suppression.

A similar mechanism could occur for glueballs.

L. Lipatov: Study of influence of T > 0 on a Pomeron: cylinder topology

Results:

- resulting equation still has conformal symmetry, despite the presence of additional scale T
- energy dependence of the Pomeron the same as at T = 0
- extension to nonlinear equation
- \blacksquare different topologies \rightarrow connection with string dynamics

Balitsky-Kovchegov non-linear equation

$$\frac{\partial N_Y(\underline{x}_0, \underline{x}_1)}{\partial Y} = \bar{\alpha}_s \int \frac{d^2 \underline{x}_2}{2\pi} \frac{(\underline{x}_0 - \underline{x}_1)^2}{(\underline{x}_0 - \underline{x}_2)^2 (\underline{x}_1 - \underline{x}_2)^2} \left[N_Y(\underline{x}_0, \underline{x}_2) + N_Y(\underline{x}_2, \underline{x}_1) - N_Y(\underline{x}_0, \underline{x}_1) - N_Y(\underline{x}_0, \underline{x}_2) N_Y(\underline{x}_2, \underline{x}_1) \right]$$

 $N_Y(\underline{x}_0, \underline{x}_1)$ forward amplitude for scattering of the $q\bar{q}$ dipole on a nucleus target. Linear + rescattering term.

$$Y = \ln(\frac{1}{x}) \qquad \mathbf{r} = \underline{x}_0 - \underline{x}_1$$
$$\bar{\alpha}_s = \frac{\alpha_s N_c}{\pi} \qquad \mathbf{b} = \frac{\underline{x}_0 + \underline{x}_1}{2}$$

Travelling waves and Saturation scale

In the approximation of large nucleus $R \gg r$, impact parameter *b* in BK equation can be neglected leading to 1+1 dim. problem

$$\partial_Y N = \bar{\alpha}_s \chi(-\partial_L) N - \bar{\alpha}_s N^2$$

with χ BFKL eigenvalue.

R.Peschanski: BK equation falls into class of nonlinear equation with general properties:

- N = 0 is unstable fixed point w.r.t. linear evolution
- nonlinearity tames the growth when $N \sim \mathcal{O}(1)$
- the initial condition must be sufficiently steep at large k, ($N \sim 1/k^2$)

Relation with other fields in physics: Disordered phenomena, spin glass phase transitions, polymer diffusion

Travelling wave fronts

N is a travelling wave which moves with constant velocity

 $N(\ln k^2 - \ln Q_s^2(Y))$

This corresponds to geometric scaling.

Rigorous results for $Q_s(Y)$ and N(Y, k) also in the running coupling case.

Diffractive Higgs production

A.Martin: Exclusive double-diffractive Higgs production is a valuable process for Higgs production at LHC

 $pp \longrightarrow p + H + p$

 $M_H = M_{b\bar{b}} (\sim 10 \,\text{GeV resol.})$ or $M_H = M_{miss} (\sim 1 \,\text{GeV resol.})$

In the latter case: if proton taggers installed at $420 \,\mathrm{m}$.

Example: $\mathcal{L} = 30 \text{ fb}^{-1}$, $M_H = 120 \text{ GeV}$ then 11 $H \rightarrow b\bar{b}$ events can be seen and 4 $b\bar{b}$ background.

Rate can be checked by observing:

 $pp \longrightarrow p + dijet + p$

So far consistent with CDF bound.

Diffractive Higgs production

$$\Lambda^2_{QCD} \ll Q^2_t \ll M^2_H$$

Use of pQCD justified

$$x' \sim \frac{Q_t}{\sqrt{s}}$$
, $x \sim \frac{M_H}{\overline{z}}$

$$x' \ll x \ll 1$$

 \sqrt{s}

Need to use unintegrated skewed gluon pdfs.

Diffractive Higgs production

$$\mathcal{M} \sim \frac{1}{M_H^2} \int \frac{d^2 Q_t}{Q_t^4} f(x_1, x_1', Q_t^2, \frac{M_H^2}{4}) f(x_2, x_2', Q_t^2, \frac{M_H^2}{4})$$

where

$$f(x_1, x_1', Q_t^2, \mu^2) \simeq R \frac{\partial}{\partial \ln Q_t^2} \left[\sqrt{T(Q_t, \mu)} x g(x, Q_t^2) \right]$$

R is a skewed effect. $T(Q_t, \mu)$ Sudakov form-factor, strongly suppress the infrared Q_t region

 $Q_t^2 \sim 4 \; {\rm GeV}^2$

Need to evaluate additional suppression factor \rightarrow no soft rescattering.

$$S^2 = 0.05$$
 at Tevatron $S^2 = 0.026$ at LHC

Pentaquarks

Prediction on Θ^+ (Praszałowicz 87', Diakonov,Petrov, Polyakov 97'):

- $m_{\Theta^+} \simeq 1530 \mathrm{MeV}$
- $\Gamma_{\Theta^+} < 10 \mathrm{MeV}$

•
$$J^P = \frac{1}{2}^+$$

● I = 0

 Θ^+ is a member of $\overline{10}$ of $SU(3)_f$:

Pentaquarks

M.Karliner: Θ^+ in terms of quark language.

 $|\Theta^+\rangle = |uudd\bar{s}\rangle$

Constituent quark model:

$$M = \sum_{i} m_{i} - \sum_{i>j} V(\lambda_{i} \cdot \lambda_{j}) \frac{\sigma_{i} \cdot \sigma_{j}}{m_{i}m_{j}}$$

where m_i quark mass, $\lambda_i SU(3)_c$ generator, σ_i Pauli spin matrices

Algebra of color \times spin

symmetric in color \times spin \leftrightarrow attractive antisymmetric in color \times spin \leftrightarrow repulsive

Θ^+ quark structure

- Identical fermions need to be antisymmetric \rightarrow hyperfine repulsion
- Maximize u u and d d distances
- Minimize hyperfine interaction
- Mate swapping $\{udd\}\{u\bar{s}\} \rightarrow \{ud\bar{s}\}\{ud\}$
- System is in P wave

Resulting configuration of diquark-triquark

Computation of mass from this configuration:

 $m_{\Theta^+} \simeq 1592 \pm 50 \text{ MeV}$

VS

 $m_{\Theta^+} = 1542 \pm 5 \text{MeV}$ from Experiment.

Predictions for other pentaquarks

Analogous diquark-triquark configurations give:

•
$$m_{\Xi^{--}} = 1720 \text{MeV}$$

Look for narrow peaks in D^-p , $\overline{D}{}^0n$, B^0p , B^+n

Interesting possibility: pentaquark production in *B* decays.

Progress in bottom production

S.Frixione:

In principle well posed perturbative problem: $m_b \gg \Lambda_{QCD}$. Partonic cross section computable in pQCD:

$$d\hat{\sigma}_{ij\to Q\bar{Q}} = \sum_{i=2}^{\infty} a_i \alpha_s^i = a_2 \alpha_s^2 + \overbrace{a_3 \alpha_s^3}^{NLO} + \dots$$

Possible uncertainties:

• Large logs:
$$a_i = \sum_{k=0}^{i-2} a_i^{(i-2-k)} \log^{i-2-k} \mathcal{O}$$
, with $\alpha_s \log^2 \mathcal{O} \ge 1$

- large p_T : $\mathcal{O} = \frac{p_T(Q)}{m_Q}$
 - threshold logs: $\mathcal{O} = 1 \frac{4m_Q^2}{\hat{s}}$
- small-x logs: $\mathcal{O} = \frac{m_Q^2}{\hat{s}}$
- quark to hadron fragmentation

Progress in bottom production

To match the resummed calculation with the fixed one FONLL scheme (Cacciari, Greco, Nason):

$$\frac{d\sigma}{dp_T^2} = a_2\alpha_s^2 + a_3\alpha_s^3 + \alpha_s^2\sum_{i=2}^{\infty} r_i^{(0)} \left(\alpha_s\log\frac{p_T^2}{m^2}\right)^i + \alpha_s^3\sum_{i=1}^{\infty} r_i^{(1)} \left(\alpha_s\log\frac{p_T^2}{m^2}\right)^i$$

- Better than NLO computations
- Better than resummed computations
- Introduces matching uncertainty

Additionally new treatment of fragmentation function, fitting the Mellin mo-

ments.

Bottom production

Improvement due to NLO \rightarrow FONLL (20%), and to correct treatment of the fragmentation (45%). Data are consistent with the upper end of the QCD band. No need to invoke new physics.

Resummation in event shapes

Study of event shapes is fundamental for

- \blacksquare measurements of coupling α_s and its renormalization group running
- measurements/cross checks of the values of the colour factors in QCD
- study of the transition from parton to hadron level

Resummation: accounts for multiple soft/collinear radiation. Perturbative expansion is poorly convergent:

$$P(1 - T < \tau) \equiv \Sigma(\tau) = 1 + \sum_{n=1}^{\infty} R_{n,2n} \alpha_s^n \ln^{2n} \tau + \dots$$

Exponentiation and resummation of LL and NLL terms:

$$\Sigma(\tau) \simeq \exp\left[\sum_{n=1} \left(\underbrace{G_{n,n+1}\alpha_s^n \ln^{n+1}\tau}_{n+1} + \underbrace{G_{n,n}\alpha_s^n \ln^n \tau}_{n+1} + \dots \right) \right]$$

Event shapes, resummation

However, resummation done for each observable separately. G.Salam: alternative analytical & numerical approach to resummation.

- derive analytically a resummed result for a general observable in terms of clearly identifiable properties of that observable
- derive associated applicability conditions to ensure that result is applied only to observables for which it is valid
- use computer subroutine for observable & high precision numerics to
 - test applicability conditions
 - determine observable-specific 'properties' needed for the explicit resummed answer

Computer Automated Expert Semi-Analytical Resummation CAESAR

In practice: user provides the routine with the observable, the program returns the observable's distribution $\Sigma(v)$ at NLL accuracy.

Example of THRUST distribution

$$\tau_{\perp} \equiv 1 - \max_{\mathbf{n}_{\perp}} \frac{\sum_{i} |\mathbf{p}_{\perp i} \cdot \mathbf{n}_{\perp}|}{\sum_{i} p_{\perp i}}$$

- run II Tevatron, $\sqrt{s} = 1.96 \text{TeV}$
- cut on jet transverse energy $E_T > 50 \text{ TeV}$
- Cut on rapidity $|\eta| < 1$

MC@NLO

S.Frixione: Problem of matching the Monte Carlo Parton Showers with the fixed order NLO calculations.

- Fixed order calculations:good → best treatment of hard emissions, accurate for total rates. bad → hadronization; soft,collinear emissions
- MC with PS: good → hadronization implemented, access to exclusive states, soft and collinearly safe. bad → high p_T , total rates

MC@NLO combines the features of both:

- The output is a set of events which are fully exclusive
- Total rates are accurate up to NLO
- NLO results for all observables are recovered upon expansion of MC@NLO results to α_s (no double counting)
- hard emissions are treated as in NLO calculations
- Soft and collinear emissions are treated as in MC
- Matching between soft and hard region is smooth

MC@NLO

MC at small p_T and NLO calculations at high p_T .

decays. No PTMIN dependence from MC@NLO and good agreement with FONLL.

Monte Carlo: HERWIG and PYTHIA

PYTHIA7 and HERWIG++ are based on one framework: ThePEG.

ThePEG (Toolkit for high energy Physics Event Generation) is a general and modular C++ framework for implementing event generator models.

Cons:

- Lack of total independence
- Miss the possibility to test codes against each other

Pros:

- Physics implementation is still independent
- Beneficial for the user to have the same framework
- Running Herwig++ with Lund String Fragmentation from Pythia7 is now very simple

HERWIG++ and Pythia7

Pythia7/ThePEG includes some basic $2 \rightarrow 2$ matrix elements, a couple of PDF parametrizations, initial and final-state parton showers, Lund String fragmentation and particle decays.

HERWIG++ includes a new parton shower algorithm, matrix element corrections, improved cluster fragmentation. Mainly e^+e^-

Example of Herwig++ results

Thrust without (left) and with (right) matrix element corrections.

Example of Herwig++ results

Momentum distributions of charged particles with respect to the thrust axis, $p_{\perp,\text{in}}^T$ (with and without matrix element corrections).

Overall agreement with the data is very good.

Plans for future

Pythia7:

- rework fragmentation to include junction strings
- multiple interactions

Herwig++:

- initial state PS
- SUSY/BSM
- \checkmark tests of Drell-Yan and jets in pp collisions

ARIADNE:

- dipole shower with ME matching
- LDC model with multiple interactions