Strings for Everybody

DESY, Hamburg November 05

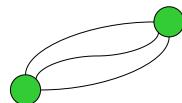
Strings for Every Body

DESY, Hamburg November 05

Introduction: S/W-coupling dualities

Dualities (strong-weak coupling) have been

main theme of string theory in last decade.


Introduction: S/W-coupling dualities

Is there dual to strongly coupled gauge theory ?

<u>Proposal</u>: Strongly coupled gauge theory is dual to weakly coupled strings.

Recall: QCD flux tubes ~ strings

Intro: 't Hooft's analysis of large N

Plan of talk

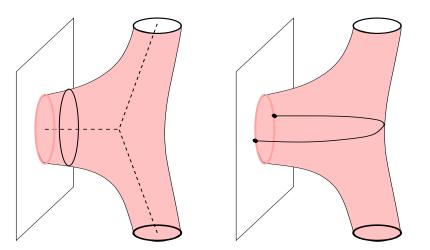
Part 0: Introduction (done) Part I: Elements of modern string theory closed strings & SUGRA, p-branes, branes & gauge theories, dualities.

Part II: AdS/CFT duality – claim & tests N=4 SYM: scaling dimension & dilaton operator, string in AdS, test of duality. Part III: Conclusions and Outlook

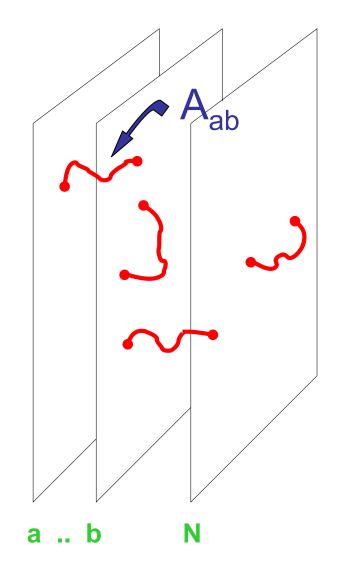
Part I: Closed strings and gravity

Closed string theory in background X $_{length}^{String}$ Infinite tower of vibrational modes $M \sim n/l_s$ String interaction through 3-vertex g_s $_{String}$ coupling

At <u>low energies</u> (E << l_s): massless closed str.

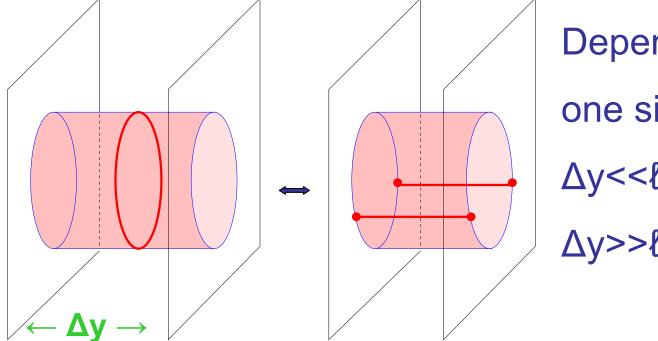

modes behave like gravitons → 10D SUGRA

Part I: solitonic p- and D-branes


- 10-dim SUGRA has solutions describing massive & charged objects localized on
- p+1 dim. surfaces. [black branes]

Branes in string theory ?

D-branes are objects on which open strings can end [Polchinski]



Part I: Open strings & gauge theory

At low energies ($E < < \ell_s$): massless modes of the open string behave like gauge bosons + matter on the world-volume of p+1- dimensional D-branes. gauge theory

Part I: Gauge-String theory dualities

Depending on Δy one side simpler $\Delta y << \ell_s$: gauge th $\Delta y >> \ell_s$: SUGRA

Loop order is not preserved

e.g. classical string \rightarrow quantum gauge theory

Closed string propagates in different dim. !

Part II: The AdS₅ / CFT₄ duality

Gauge theory on a stack of D3-branes

Strings in the near horizon geometry

 $\mathcal{N}=4$ 4D S Yang-Mills

U(N) gauge field A; 6 scalars Φ

& their fermionic superpartners

4-dim conformal QFT

Closed str. in AdS_5xS^5

 $x_0^2 + x_1^2 - x_2^2 - x_3^2 - x_4^2 - x_5^2 = R^2$

Curved backgrnd X_R

$$\lambda = g_{YM}^2 N \sim R^4 / \ell_s^4$$

Part II: Scaling dimension in CFT

Scaling dimension Δ characterizes behavior of fields under scale trafos: $\Psi(ax) \rightarrow a^{-\Delta} \Psi(x)$ Class. theory: $A(x), \Phi(x), \dots Tr(\Phi_1(x)\Phi_2(x)\partial\Phi_1(x))$ $\Delta = 1$ \dots $\Delta = 1+1+1+1=4$

Quantum theory: Scaling dimension encoded

in $D = D_0 + \lambda D_1 + \lambda^2 D_2 + \dots$ Degenerate Perturbation theory Dilaton operator diagonal + perturbative corrections diag(Δ) Feynman diagrams

Part II: Dilaton operator of SYM

Space of (single trace) composite fields ~ state space of one-dimensional spin chain :

e.g. Tr $(Z \overline{Z} Z Z \overline{Z} Z ... \overline{Z} Z)$ $Z = \Phi_1 + i\Phi_2, \ \overline{Z} = \Phi_1 - i\Phi_2$ n = # of spins

D₁ acts like Hamiltonian of spin chain model (e.g. of Heisenberg model) on fields in SYM D₁ ~ H ~ $\Sigma \sigma_i \sigma_{i+1}$ Diagonalizable for small n & in the limit n >> 1 (TBA)

Part II: Spectrum for string in AdS

For a particle moving freely in some background X \rightarrow spectrum of Laplace operator $H = \Delta_x$ e.g. real line: $H = -\partial^2 = E = p^2$ AdS harder (bound states) Analogous infinite dimensional problem for a string in AdS not solved (spectrum unknown) String spectrum known • $R/l_s >> 1$ (flat space) semi-classical limit (large quantum numbers) e.g. rotating strings => $E = E_{J}(R)$ J >> 1 spin J

Part II: Tests of AdS/CFT duality

Spectrum in AdS → Scaling dim. in SYM

Semi-classical limit: String states with large J

 \leftrightarrow long composite operators in gauge theory.

- $\mathsf{E}_{\mathsf{J}}(\rho) \sim \mathsf{E}_{\mathsf{J}}^{(0)} + \mathsf{E}_{\mathsf{J}}^{(1)} \rho + .. \leftrightarrow \mathsf{D} \sim \mathsf{D}_{0} + \mathsf{D}_{1} \lambda + ...$ $\rho = \mathsf{R}/\ell_{\mathsf{s}}$
- D₁ acts like Hamiltonian of spin chain model

(e.g. of Heisenberg model) on fields in SYM

classical spinning strings \leftrightarrow diag. of spin chain H (TBA)

Part III: Outlook and conclusions

AdS/CFT dualities generalize to field theories

- in other dimensions $(e.g. AdS_3/CFT_2)$ solvable?

• with less symmetry (less SUSY; w/o scale inv.)

 $S^5 \rightarrow X^5$; confining theories

Open problem: solution of perturbative string theory in AdS spaces (spectrum, interaction). \leftrightarrow 2D σ -model on super spaces \leftrightarrow cond mat. $S_{Pol}(X) \sim \int dx dt G_{ab}(X) \partial X^a \partial X^b$ $AdS_3 \sim PSU(1,1|2) \dots$

Part III: Further aspects of duality

Tempting to read duality in <u>opposite direction</u>:

Gauge theory → stringy extension of gravity cosmological backgrounds, black holes

Every Body for Strings

Part III: Further aspects of duality

Tempting to read duality in <u>opposite direction</u>:

Gauge theory → stringy extension of gravity cosmological backgrounds, black holes

Everybody for Strings