Search for new particles at LEP2

M.C. Espirito Santo / LIP-Lisboa DESY, 8-9 April 2003

12 years of excellent e+e- data E_{cm} 91-209 GeV, ~1000 pb⁻¹/Exp

E _{cm} (GeV)	91	130-136	161-172	183	189	192-202	204-209
Lum/Exp (pb ⁻¹)	175	5	22	55	160	230	220
Year	89-95	1995	1996	1997	1998	1999	2000
LEP2 : E _{cm} 161-209 GeV Lum ~2700 pb ⁻¹				Integrated Lumi (pb ⁻¹) 100 100 100 100 100 100 100 10	1998 1997	1999 <u>6 % 8</u>	202 203 503 209 504 507 509 509 509 509 509 509 509 509 509 509

Last data in 2000, analyses being finalised now...

LEP Working Groups:

Fruitful collaboration between experiments:

Combined results

LEP Physics

- SM tests to ~0.1%
- m_{top} indirect estimation
- m_{Higgs} indirect limits

 $N_v = 2.9841 \pm 0.0088$

Þ	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas}
$\Delta \alpha_{\rm had}^{(5)}({\rm m_{z}})$	0.02761 ± 0.00036	-0.24	
m ₇ [GeV]	91.1875 ± 0.0021	0.00	
Γ ₇ [GeV]	2.4952 ± 0.0023	-0.41	
σ ⁰ _{had} [nb]	41.540 ± 0.037	1.63	
R	$\bf 20.767 \pm 0.025$	1.04	_
A ^{0,I} fb	0.01714 ± 0.00095	0.68	-
A _I (P _z)	0.1465 ± 0.0032	-0.55	-
R _b	0.21644 ± 0.00065	1.01	-
R	0.1718 ± 0.0031	-0.15	•
A ^{0,b}	0.0995 ± 0.0017	-2.62	
A ^{0,c}	0.0713 ± 0.0036	-0.84	-
A _b	0.922 ± 0.020	-0.64	-
A _c	$\textbf{0.670} \pm \textbf{0.026}$	0.06	
A(SLD)	0.1513 ± 0.0021	1.46	_
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	
m _w [GeV]	80.449 ± 0.034	1.62	
Γ _w [GeV]	$\textbf{2.136} \pm \textbf{0.069}$	0.62	-
m _t [GeV]	174.3 ± 5.1	0.00	
sin ² θ _w (vN)	0.2277 ± 0.0016	3.00	
Q _w (Cs)	$\textbf{-72.18} \pm \textbf{0.46}$	1.52	

LEP Physics – Indirect limits

Precision measurements at LEP give a hint on what is (or not!) beyond...

Indirect limits on the Higgs mass $\underline{!}$ Indirect limits on new physics scale Λ

A light Higgs is favoured... and partly excluded by direct searches

from e+e- \rightarrow I+I- cross-sections

Λ = New physics scale in the Contact Interactions effective Lagrangian

Exclusion depends on type of coupling

Searches at LEP – why?

SM: still very successful, but...

•EW symmetry breaking

=> we need the Higgs

•Fine tunning /Mass hierarchy problem $M_{Planck} >> M_{EW}, M_{H} \sim M_{EW} \text{ but } \delta M_{H}^{2} \sim M_{Planck}^{2}$

•Flavour pattern => 3 families?

- Many free parameters
 - Quantum numbers of particles?
 - Mass values?

•Unification?

•Gravity?

 Λ should be:

- Large enough to explain decoupling of new physics
- Close enough to EW scale to address hierarchy problem

Around the corner?

Searches at LEP – how?

Clean e⁺e⁻ environment => excellent conditions for new physics searches

Many and exhaustive searches Direct / indirect New particles / new interactions

some "golden" topologies: acoplanar jets and leptons, 4 jets, photons only

Search at LEP – how?

Outline

Non-SUSY

- Motivation
- 4th
- Excited/exotic leptons

SUSY

- Motivation
- Exotic GMSB, AMSB
- SUGRA
- CMSSM
- (RPV)

No signal in any of the channels...

... Many searches not covered:

All Higgs (many extended/exotic scenarios), Technicolor, FCNC, Extra-dims....

Complicating the fermionic sector...

Fermion flavour pattern and Interactions group not justified in the SM

- Additional families?
- Fermions with different SU(2)x(U1) quantum numbers?
- Additional bosons?

... May arise in gauge unification theories or extended EW models

Are we at the fundamental level?

=> Composite models

- Excited states
- Particles with L and B

Powerful limits exist: LEP1 (Z total and invisible width, direct searches) • Low energy $\mu \rightarrow e\gamma$, g-2, ...

4th family leptons

Observable production cross-sections

Decay through mixing with light lepton

 $L^0 \rightarrow \tau W$

90.3

80.5

 $L^0L^0 \rightarrow WWII$

4th family leptons L[±] search

Mass IImits (Gev/C ²) L3			
$L^{\pm} \rightarrow \nu W$	L [±] →L ⁰ W	L^{\pm} stable	
	(∆m>15)		
100.8	101.5	90.3	

Comparable limits for exotic fermions (Vector, Mirror)

Excited leptons

Substructure in the fermionic sector => Excited states

Mass and coupling of the excited lepton:

 $f/\Lambda = \sqrt{2} \cdot \lambda / m_{\ell^*}$

Excited leptons

0

e

Excited leptons

Pair production

f=-f'

102.0

102.0

102.0

Single production: direct + indirect

Outline

Non-SUSY

Motivation

Motivation

- 4th family leptons
- Excited/exotic leptons

SUSY • Moti

- Exotic GMSB, AMSB
- SUGRA
- CMSSM
- (RpV)

No signal in any of the channels...

... Many searches not covered: All Higgs (many extended/exotic scenarios), Technicolor, FCNC, Extra-dims....

SUSY – why, what, how?

SUSY – how?

SUSY is a broken symmetry => SUSY Mechanism?

=> phenomenology

R-parity conservation:

Decay to stable (neutral) LSP

Decay chains to NLSP: several ∆M involved

SUSY – how?

Mechanism of SUSY breaking has deep implications on phenomenology

SUGRA Gravity mediated LSP: frequently $\widetilde{\chi}_{1}^{0}$

GMSB Gauge mediatede.g. AMSBLSP : \widetilde{G} (m << GeV)</td>LSP : $\widetilde{\chi}_1^0$, $\widetilde{\nu}$, \widetilde{G}

Other

Signatures & dominant channels depend on specific scenario considered Increased predictability, but still large number of free parameters

 $10^{3} < \sqrt{F} < 10^{10} \text{ GeV} \Rightarrow \text{ Light } \widetilde{G} \text{ (LSP) (order 1 KeV/c^2, or less)}$

- No severe FCNC (Gauge forces flavour blind)
- No dark matter candidate

Hiden SUSY

 \widetilde{G} couples weakly with all particles \Rightarrow only NLSP decays directly into \widetilde{G}

Gravitino mass and Nature of NLSP determine phenomenology

GMSB – lifetime signature

GMSB – Constraints on parameters

- Rescaling anomalies in supergravity lagrangian => soft mass parameters in visible sector
- Additional non-anomaly contributions to avoid tachyonic sleptons
- Could solve SUSY FCNC problem

Nearly mass degenerate and gaugino-like

AMSB – Constraints on parameters

- •LEP1 constraints (Z width)
- •SM Higgs search
- M_H>114.4 GeV/c² @ 95% CL
- Invisible Higgs search
- •Small ΔM chargino search

AMSB scan with **Isajet 7.63**

 $1 < m_{3/2} < 50 \text{ TeV/c}^2$

 $0 < m_0 < 1 \text{ TeV/c}^2$

 $1.5 < tan \beta < 45$

-Search for $\widetilde{\chi^{\!\scriptscriptstyle\pm}}\!\to\widetilde{\nu}\;I^{\scriptscriptstyle\pm}$

SUGRA: Hiden SUGRA	Gravity Visible sector
	 LSP dark matter candidade Possible FCNC problems
Explored at LEP in an exhaust	ive way Searches for
	- Charginos - Sleptons
	- Neutralinos - Squarks

1) Searches conducted in "model-independent" way:

- Minimal set of assumptions
- Interpretations in terms of involved masses/cross-sections

"Baseline" search + "difficult cases/corners"

2) Common interpretations in terms of model parameters
 ⇒ Manageable number of free parameters
 ⇒ Specific scenarios

⇒" LEP-CMSSM" ⇒ mSUGRA

MSSM => SUGRA => CMSSM => mSUGRA

- Minimal particle/field content (MSSM)
 - Soft SUSY breaking
- R parity conservation $R_p = (-1)^{3B-L+2S}$
- Gravity mediated SUSY breaking
- Neutralino LSP
- Assumptions on BR's
- Gaugino mass unification m_{1/2}
- Assumptions on sfermion masses
- Assumptions on trilinear couplings
- sfermion mass unification m₀
- Scalar mass unification
- Unification of trilinear couplings A₀
- EW breaking scale

e.g. $BR(\tilde{p} \rightarrow p LSP) = 1$ $M_1 = \frac{5}{3} \tan^2 \theta_w M_2 \approx 0.5 M_2$ e.g. Heavy sfermions e.g. No mixing "LEP-CMSSM" $m_0, m_{1/2}, A_\tau, A_b, A_t, \tan \beta, \mu$

 $\begin{array}{c} \textbf{mSUGRA} \\ \textbf{m}_{0}, \textbf{m}_{1/2}, \textbf{A}_{0}, tan\beta, \mathsf{sign}(\mu) \end{array}$

many

some

all

Chargino searches

Main direct SUSY detection channel in large region of parameter space

=> Large cross-sections

Leptonic BR enhanced if sleptons are light

• cascades $\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} \gamma$

Slepton searches

Slepton searches

If light enough to be observed, seriously affect production and decay of charginos and neutralinos

LSP mass limit in CMSSM

(A) LSP mass limit in CMSSM – High m₀

Heavy sfermions => no effect on phenomenology Chargino exclusion dominates

Cascades:

 $\widetilde{\chi}_{2}^{0} \rightarrow \widetilde{\chi}_{1}^{0} \gamma \Rightarrow$ Cover topologies with γ 's in chargino/neutralino searches (low M₂ & μ) $\widetilde{\chi}_{3}^{0} \widetilde{\chi}_{2}^{0}$, $\widetilde{\chi}_{4}^{0} \widetilde{\chi}_{2}^{0} \Rightarrow$ Allow to go slightly beyond chargino kinematic limit (M₂<120)

(B) LSP mass limit in CMSSM – Higgs

Low $tan\beta$ covered by Higgs exclusions if included

 $0.54 < \tan\beta < 2.36$ (M_{top}=174.3 GeV/c²)

MSSM Higgs search in maximal M_{h0} scenario: $M_A \le 1000 \text{ GeV/c}^2$, $A_t - \mu/\tan\beta = \sqrt{6 \text{ TeV/c}^2}$

 $A_t \text{-}\mu/\text{tan}\beta => M_{h0} \text{ maximal}$ M_{h0} maximised by tuning mixing in the stop sector

(C) LSP mass limit in CMSSM – Low m_0

Light Sleptons:

Effect on chargino cross-section (OK down to m₀~ 200 GeV/c²) => Increased neutralino cross-section!

Chargino invisible decays: $\widetilde{\chi}_1^\pm \to \widetilde{\nu} \ell^\pm$ with $m(\widetilde{\chi}_1^\pm) \approx m(\widetilde{\nu})$

=> Charginos cannot exclude

=> Use sleptons direct search:

GUT scale unification:

$$m_{\tilde{f}} \equiv m_{\tilde{f}}(\tan\beta,m_0,M_2)$$

 $\widetilde{e} \text{ search } \Rightarrow m_{\widetilde{e}} \text{ limit } \Rightarrow m_{\widetilde{\nu}} \text{ limit } \Rightarrow m_{\widetilde{\chi}_1^\pm} \text{ limit } \Rightarrow m_{\text{LSP}} \text{ limit }$

Neutralinos can play a role in low cross-section (chargino or selectron) areas

(D) LSP mass limit in CMSSM – Mixing

3rd family L-R mixing can give light $\widetilde{ au}_1, \widetilde{ beta}_1, \widetilde{ beta}_1$

Mass splitting
$$\propto A_{\tau} - \mu \tan \beta$$

 $A_{b} - \mu \tan \beta$
 $A_{t} - \mu / \tan \beta$
Large $\tan \beta$

 $ightarrow \widetilde{ au}_1, \widetilde{ au}_2$

mixing

 $\widetilde{\tau}_{R}, \widetilde{\tau}_{I}$

More studied cases:

No mixing

• A=0

then study variation with mixing

LSP mass limit in CMSSM – Mixing

Light stau => blind spot in $\widetilde{\chi}_1^{\pm}$ search

 $\widetilde{\chi}_{1}^{\pm} \rightarrow \widetilde{\tau}_{1} \vee \rightarrow \widetilde{\chi}_{1}^{0} \tau \vee, \quad \mathbf{m}(\widetilde{\tau}_{1}) \approx \mathbf{m}(\widetilde{\chi}_{1}^{0})$

DELPHI

55

 $M(\tilde{\chi}_1^0)$ (GeV/c²)

50

40

45

Only visible channels:

Light squarks

direct squark search... ... down to low ΛM

Obtained limit (set by squarks and stau cascades) robust with mixing Invisible higgs search can exclude some points but not for any mixing

Stau mixing

A conservative limit on m_{Isp} valid for any $\tilde{\tau}$ mixing

model with mixing only in the stau sector

=> maximises (LSP, stau)
 degeneracy region

M_{LSP} > **39 GeV/c**²

LSP mass limit – ADLO combinations

RpV

• Explicit RpV breaking trilinear superpotential terms:

- Sfermions can decay directly into fermions
- SUSY particles can be singly produced
- The LSP is no longer stable
- Only one λ -coupling non-negligible at a time
- **Prompt decay** of sparticles (L<1 cm)

RpV

... At production Resonant and non-resonant sneutrino production

Different channels and couplings => many possible final state topologies !!

RpV - examples

Direct Decays

Indirect decays tend to dominate, when kinematically allowed

SUSY at LEP - Summary

... Many analyses, scenarios, **results**!

- Cross-section limits: ≈ model-independent
- Mass limits => Assumptions (BR, ΔM , m, ...)
- Exclusion of parameter space regions

More constrained scenarios: Need to increase predictive power... Still trying to cover most realistic scenarios

In general:

- Excluded ranges comparable in different scenarios
 - » SUSY limits proved to be robust
 - » Chargino: close to kinematic limit
 - » LSP: ~ 40 GeV/c²
- General exclusions not easy to set

Sparticle mass limits (GeV/c ²)		
$\mathfrak{\tilde{X}}^{\pm}$	103.5	SUGRA, large m_0 , $\Delta M>3$
	92	CMSSM
	96	RpV "CMSSM"
	96	GMSB
	68	AMSB
$\widetilde{\chi}^{0}$	45	CMSSM
	38	RpV "CMSSM"
	89	GMSB
	68	AMSB
$\tilde{\nu}$	85	RpV
	98	GMSB, slepton NSLP
ĩ	85	SUGRA ∆M>15
	96	RpV (LLE) , Δ M>3 , m _χ >10
	87	GMSB, slepton NLSP
õ,ĩ	76	SUGRA, ∆M>7
	77	RpV (LLE), ∆M>5

Searches at LEP - Perspective

No signal in any of the channels...

Final results are currently being prepared

70% of Beyond the SM session ICHEP 2002 contributed papers

Searches at LEP - Perspective

LEP did a great job for the last 12 years!

...Great opportunities for searches at next colliders

Tevatron

LHC

Linear collider

Tevatron: the next step - the future is already here!
LHC: Acessing yet unexplored regions... First observations of SUSY?
LC: detailed map of SUSY
High precision measurement (masses, cross-section, couplings, mixings)
Extrapolation to GUT, Planck => origin of SUSY breaking

Most scenarios involve rich new physics at $E \sim 1 \text{ TeV}$

In the next decade, we hope to find a key... ... At least the one leading us to the next puzzle!