First Results from RHIC Spin Program and Future Prospects DESY/Hamburg Seminar, May 25, 2004 DESY/Zeuthen Seminar, May 26, 2004

> Naohito Saito Kyoto University

Outline

- Heavy Introduction to) Spin Structure of the Nucleon
- RHIC Spin Program
- Polarised Proton Acceleration Updates
- First Results
 - Gluon Polarization in the Proton
 - Single Transverse Spin Asymmetry
- Future Prospects
- Summary

"Proton Spin Crisis" EMC PLB & NP (1988)

 Proton Spin carried by Quark Spin is ZERO??
 – Gluon Spin ?
 – Orbital Motion ?

DIS of Lepton from Nucleon

- Structure Probed by Photon

 Function of *x* and *Q*²=-*q*²
 Charge Squared
 Not distinguish Down and Strange
 - Insensitive to Gluon

Objective is

$$\Delta \Sigma = \Delta U + \Delta D + \Delta S$$

$$k$$
Elastic
$$q$$

$$p'$$

$$xP=P$$

$$P$$

Proton
$$\begin{cases} g_1^p(x,Q^2) = \frac{1}{2} \left\{ \frac{4}{9} \Delta U(x,Q^2) + \frac{1}{9} \Delta D(x,Q^2) + \frac{1}{9} \Delta S(x,Q^2) \right\} \\ g_1^n(x,Q^2) = \frac{1}{2} \left\{ \frac{1}{9} \Delta U(x,Q^2) + \frac{4}{9} \Delta D(x,Q^2) + \frac{1}{9} \Delta S(x,Q^2) \right\} \end{cases}$$

Helicity Amplitudes and PDFs

Parton Distribution is connected to Forward Scattering Amplitude of Proton and Parton by Optical Theorem

= Im

For Proton (spin=1/2) there are 3 possibilities

Precision Data from DIS

- Precision Data in Wide Kinematical Range
 - Q² evolution agrees with pQCD
- Notes:
 - Only Fixed Target
 Spin Experiments
 so far...
 - Need a Collider to extend kinematical coverage

Polarised Parton Distributions Global QCD Analysis to Extract Polarized **Quark and Gluon Distributions** - (a la MRST, CTEQ) Four Independent Distributions are often extracted – e.g. $\Delta U(x,Q^2), \Delta D(), \Delta S(), \Delta g()$ - In unpolarised case, even more $u,\overline{u},d,d,s,\overline{s},c,b,t,g$ We have ONLY TWO independent measurements $g_1^{p}(x, Q^2)$ and $g_1^{n}(x, Q^2)$ $-Q^2$ evolution helps?

Separation of Pol' Quark Dist's Only two independent measurements $g_1^{p}(x, Q^2)$ and $g_1^{n}(x, Q^2)$ Separation into 3 quark dist's relies on -1^{st} moments (employ β -decay const's), unless How much do we know about $\Delta g(x)$? **Non-Singlet Quark Distribution** Singlet Quark Distribution $\frac{\partial}{\partial(\ln Q^2)} \begin{pmatrix} \Delta \Sigma(x, Q^2) \\ \Delta g(x, Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \begin{pmatrix} \Delta P_{qq}(x) & \Delta P_{qg}(x) \\ \Delta P_{gq}(x) & \Delta P_{gg}(x) \end{pmatrix} \otimes \begin{pmatrix} \Delta \Sigma(x, Q^2) \\ \Delta g(x, Q^2) \end{pmatrix}$

Polarised PDF

Asymmetry Analysis Collaboration

M. Hirai, S. Kumano and N. Saito, PRD (2004)

■ Accelerate and Collide Polarized Proton Beams with Hi-Polarization and Luminosity $P_{R} = 70\%, \sqrt{s} = 200,500 \text{GeV}, L_{max} = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Brief History

- 1990: Polarized Collider VVS in Penn-State U
- 1991: RHIC Spin Collaboration Formed
- 1993: PHENIX and STAR integrated Spin Program
- 1995: RIKEN-BNL Collaboration (~\$20M)
- 2002: First Polarized Proton Collision!
- Additional support from DOE and NSF

What Do We Measure at RHIC? We measure spin asymmetries for cross sections A_{LL}: double helicity asymmetry

- Useful in extracting $\Delta g(x)$, $\Delta q(x)$ etc.

$$A_{LL} = \frac{\sigma(++) - \sigma(+-)}{\sigma(++) + \sigma(+-)}$$

A_L:Parity Violation

A_{TT}: Transversity

A_N :Twist-3

RHIC: The First Polarised pp Collider

RHIC Spin: L and P Improvements

- Run 2: A_N
 ~7nb⁻¹/day
 P_B~20%
- Run-3:A_{LL} – 10nb⁻¹/day P = 26%
 - $P_{B} \sim 26\%$
 - (AGS) 40%
- Run-4: A_{LL}
 - Only Machine Studies
 - 30nb⁻¹/day
 - $P_{B} \sim 40\%$
 - (AGS) 50%
- Run-5 :A_{LL}
 Long pp Run
 planned

Run-4 Achievements (5+1 weeks)

- Improved Polarisation at AGS
 - With a new Helical Snake: 40% \rightarrow 50 %
 - Further improvement with additional snake is expected in Run-5
- Established a better working point at RHIC
 - Previous tune ~ 0.22 \rightarrow ~ 0.70
 - Better beam life time and polarisation observed
- Established a vacuum improvement with NEG coating
 - Significantly higher beam current can be expected in Run-5
- Commissioned Polarised Gas Jet Target
 Need for absolute beam polarisation
- Commissioned Exp's for Hi-Luminosity
 Luminosity Monitor, DAQ, etc.

Towards Design Luminosity

Higher beam current and tune control are the keys

	Run-3	Run-4	Goal	Gain	Remark
# of bunches	55	55	120	2.2	
beam intensity	0.6	0.8	2.0	2.5	NEG coating to reduce e-cloud
beta* (m)	1.3	1.3	1.0	1.3	
emittance	10π	20π	20π	1.0	
useful vertex (%)	50	50	100	2.0	200 MHz storage RF cavity
Net Gain				35.5	
Uptime (%)	10	50	70	1.4	improve stability
Lavg/Lpeak	0.5	0.7	1.0	1.43	
Net Gain				2.00	
Total Gain				70.91	

First Results from RHIC Spin

What Do We Learn?

- We need more statistics!
- pp collisions are so sensitive to ∆g(x) so that it already provides similar constraints to two decades of polarised DIS experiments
 - (yes, our preparation also taking a decade)

Caveats:

- Applicability of pQCD:
 - some confirmation with xsection measurement DONE
 - Intrinsic-k_T, fragmentation functions
- $A_{LL}(\pi^0)/A_{LL}(jet)$ are sensitive to
 - $(\Delta g^2 + \alpha \Delta q \Delta g + \beta \Delta q \Delta q)$; what about sign?

It is very important to have both lepton and hadron scattering data to reveal possible systematics involved.

Precision QCD test for Hadron Prdctn

- pp→ π⁰ X @
 200 GeV
 (PHENIX)
- Cross Section is well described by the pQCD over 8 order of magnitude!
- Sensitivity for
 Fragmentation
 Function

0.2 0.4 0.6 0.8

 $\mathbf{X}_{\mathbf{F}}$

PHENIX Results: Central Rapidity ZERO asymmetry:

STAR Results: Forward Rapidity

- Large Asymmetry Measured
- To distinguish models, jet axis reconstruction is required
- Probably...A_N requires large x_{BJ}, which is only achievable in hi-p_T in Central rapidity (small xsection)
- Global Analysis with HERMES results would be beneficial

Future Prospects

assuming $\int Ldt = 320 \text{pb}^{-1} \text{ at } \sqrt{s} = 200 \text{ GeV}$ $\int Ldt = 800 \text{pb}^{-1} \text{ at } \sqrt{s} = 500 \text{ GeV}$ with 70% polarization

Impact of PHENIX Prompt Photon If we include Future PHENIX Data into Global Analysis...

M. Hirai et al.

Gluon Polarization in the Proton

Dig out $\Delta g(x) \& \Delta g$!

- Current Experiments - HERMES High-pT hadron pair
 - RHIC Spin
 - Prompt Photon (+ jet)
 - Jet
 - Inclusive hadron
 - **Gluon Fusion** Heavy flavor (charm, bottom, J/y ...)

- COMPASS

- Open charm
- High-pT hadron pair

Future Possibilities - EIC

- Polarized HERA
- TESLA-N

Photon-gluon fusion

W Production in pp Collisions

W is produced through pure V-A

- Chirality is fixed \rightarrow ideal for spin structure studies
- W couples to weak charge ~ flavor
 - Flavor is (almost) fixed → ideal for flavor structure studies
- Parity Violating Asymmetry A_L:

 $\frac{\Delta u(x_a)\bar{d}(x_b) - \Delta \bar{d}(x_a)u(x_b)}{u(x_a)\bar{d}(x_b) + \bar{d}(x_a)u(x_b)}$

Sensitivity Goal

- Studies with PHENIX Muon Arms
 - STAR Endcap
 Calorimeter provides
 similar sensitivity
 - $-A_L \sim \Delta u/u(x) \sim 0.7-0.9$ (!) at large-*x*
- Charm associated W production will probe Δs $(gs \rightarrow Wc)$
- Studies for upgraded Energy and Luminosity are underway...

RHIC Spin and HERMES SIDIS

Complementary!
 – RHIC W

- No fragmentation ambiguity
- x-range limited
- Useless for transversity studies

HERMES Semi-Inclusive DIS

Wide *x*-range
Could be used for transversity studies

Transversity Measurements
 Drell-Yan Production of Lepton Pairs

 Clean, but low statistics (QED process)
 Precision will be improved by L upgrade

O. Martin, A. Schaefer, M. Stratmann, W. Vogelsang PRD60 (99) 117502

Transverse Jet Production

Advantages:

- Enormous yield could overcome the smallness of asymmetries
- No mixture with Gluonic contribution

Caveats:

- Control of systematics will be the key for the success
 - A_{TT}~0.2% = 0.1% (if P_B=70%)
- A_{TT} is cos2¢ moment: statistics will be divided into several ¢-bins

Single Transverse Spin Asymmetries

- If we have analyzer of final state quark polarization...
 - We can use Spin
 Transfer Double
 Spin Asymmetry
 to probe Transversity!
 - $A_T \propto h_1(x) \otimes a_{TT}^{if}$ \otimes (Spin Dep. Frag. Fn.)

Spin Dep. Frag. Fn.
 Can be studied in
 e+e- collisions
 → BELLE

Spin Transfer Double Spin Asymmetry

RHIC Spin Roadmap

Year	P(%)	Weeks (Com/Ph)	Lumi	CM Energy	Goals
2002	20	8 (5/3)	0.15 pb ⁻¹	200 GeV	Transverse Spin Systematic Studies
2003	30	8 (5/3)	0.35 pb ⁻¹	200 GeV	Longitudinal Spin Gluon Polarization?
2004	50	5(5/0)	pb-1	200 GeV	RHIC Commissioning Polarized Gas Jet Target
2005	70	17 (5/12)	10 pb ⁻¹	200 GeV 500 GeV	Gluon Polarization Commissioning-1?
2006/7	70	19(5/14)	200 pb ⁻¹ pb ⁻¹	200 GeV 500 GeV	Gluon Polarization Commissioning-2?
2008/9	70	19 (5/14)	400 pb ⁻¹	500 GeV	W-Physics

Growing Fields...

Hi-E Heavy Ion Physics RHIC, LHC

Precision Structure Stud Future Projects

Hadron Collider Physics TEVATRON LHC

Dark Matter

Neutron EDM

RHIC-Spin Gluon Polarization Quark Polarization Transversity Pol. Fragmentation Role of Strangeness

Ongoing Spin Experiments COMPASS,HERMES JLab

e+e- Data ...LEP, BELLE Ongoing Unpolarized Studies HERA-II

Strangeness Nuclear Physics

Mechanism of Confinement Lattice-QCD, Effective Model

Summary

- After a decade of efforts, RHIC Spin started to produce physics results
 - Gluon polarization by π^0 production
 - Single transverse spin asymmetry for hadron production
- Run-4 machine commissioning was very successful
- With further improvements on machine performance, exciting results are coming soon!
 See our review article: Prospects for Spin Physics at RHC
 Bunde N. Sato. J. Sofier and W. Votelsa
 - Ann. Rev. of Nucl. And Part. Science 200