Neutrino Physics at

CERN and Gran Sasso

Roberto Petti

CERN

DESY physics seminar March 26-27, 2002

Roberto Petti

CERN

<u>OUTLINE</u>

Introduction

- Why neutrinos?
- Neutrino oscillations
- II The SBL experiments at CERN
- Motivations for SBL
- ✤ The WANF neutrino beam
- ✦ Detectors & data samples
- \bullet The ν_{τ} search

- III The LBL program at Gran Sasso
 - Motivations for LBL
 - The CNGS neutrino beam
 - The proposed detectors
 - \bullet The ν_{τ} search
- **IV** Outlook and conclusions

Roberto Petti

Introduction

CERN

WHY NEUTRINOS?

determination of $\sin^2 \theta_W$ etc.). to the assesment of Standard Model (NC discovery, first Neutrinos have already given foundamental contributions

BRIGHT SIDE Neutrinos produce ve

potentially used for precision physics: Neutrinos produce very clean interactions, which can be

- switch off all but weak interaction;
- fully polarized;
- sensitivity to GUT and new physics
- \implies excellent laboratory probe.

► DARK SIDE

Neutrinos are largely unknown particles:

- mass (if any)?
- properties (Fermi, Majorana etc.)?
- tiny cross-section with matter.

 \implies still many things to learn.

EXPERIMENTAL ISSUES

٠ The main difficulty to overcome for neutrino experiments is

STATISTICS due to the small probability of

interaction with matter. Two options are possible:

- massive detectors
- large fluxes ψ difficult to keep high resolution at reasonable cost.
- ↓ long running time and/or high intensity beams.

Super-K SNO	CDHS CHARM II BBC E531 CCFR NuTeV	Experiment
22.5 kt 1.0 kt	750 t 547 t various 91 kg 690 t	Target mass
1 1	5.2×10^{18} 9.0 $\times 10^{18}$ various 2.0 $\times 10^{19}$ 1.3 $\times 10^{18}$	Exposure p.o.t.
<i>6.8</i> ×10 ³ 1.1×10 ³	10 ⁷ 10 ⁷ 5.7×10 ⁴ 3.8×10 ³ 0.6×10 ⁶ 1.3×10 ⁶	Statistics $ u_{\mu} CC $
water Ceren. D_2O	massive calo massive calo bubble ch. emulsions massive calo massive calo	Technique

level, in the best cases. So far, the word "precision" for neutrinos means the %

NEUTRINO OSCILLATIONS

weak $(\nu_{\epsilon},\nu_{\mu},\nu_{\tau})$ and mass (ν_1,ν_2,ν_3) eigenstates, which are then related, in analogy to the quarks, by the relationship: In general, if $m_{\nu} \neq 0$, neutrinos can have different

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

where U is a unitary matrix: complex phase \implies Ą

• The oscillation
$$\nu_{\alpha} \to \nu_{\beta}$$
 has a **PROBABILITY**
 $P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i=1}^{3} \sum_{j>i}^{3} U_{\alpha i} U_{\beta i} U^{*}_{\alpha j} U^{*}_{\beta j} \sin^{2} \left(\pi \frac{L}{\lambda_{osc}}\right)$

and the oscillation length λ_{osc} is defined as: where L is the distance from the neutrino source (Km)

$$\lambda_{osc} \stackrel{\text{def}}{=} \frac{2.48 E}{\Delta m_{ij}^2}$$

with $\Delta m_{ij}^2 \equiv |m_i^2 - m_j^2|$ (eV²) and E ν energy (GeV).

- I. at least one mass scale not correctly determined:
- o superposition of oscillation patterns;
- wrong interpretation.

If different mass scales, oscillations will decouple and can be ____

approximated by a **TWO-NEUTRINO** oscillation:
$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

and the probability of oscillation becomes:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\pi \frac{L}{\lambda_{osc}}\right)$$

the TWO independent parameters which define the mixing: Results are presented in the PLANE $(\sin^2 2\theta,$ $\Delta m^2)$

- ı. Low Δm^2 : large $\lambda_{\rm osci}$ $P \propto L^2/E^2$;

- .

- High Δm^2 : small λ_{osc} , $P = 1/2 \sin^2 2\theta$.
- parameters L and E, which can be adjusted experimentally: The actual oscillation pattern is a function of the two \Rightarrow strongest evidence signal showing L/Edependence

CERN

experiments at CERN The Short Baseline

Roberto Petti

CERN

MOTIVATIONS FOR WANF

From a cosmological point of view, massive neutrinos could be one of the contributions to the missing 'DARK MATTER' provided:

$$\sum m_{
u,i} \geq a \, few \, eV$$

 ν_{2}

٠ estimate for neutrino mas Within the SEE-SAW es, based on the MSW solar interpretation: framework it is possible to obtain an

$$\Delta m_{\mu e}^2 = \left(\frac{m_{\mu(c)}^2}{M}\right)^2 - \left(\frac{m_{e(u)}^2}{M}\right)^2 \sim \left(\frac{m_{\mu(c)}^2}{M}\right)^2 \sim 10^{-5} \ eV^2$$

where M is a Majorana mass term \gg standard electroweak scale The above expression taking into account flavour hierarchy leads to:

Roberto Petti

5

10⁻³ 10⁻² 10⁻¹ 1

5 ±1² 20

appearance of ν_{τ} 's in a pure ν_{μ} beam. The ideal evidence for $u_{\mu} \rightarrow
u_{\tau}$ oscillations is the direct

SBL experiments to probe the large Δm^2 region.

Severe constraints are imposed on the experimental

program in order to achieve the

DETECTION OF τ

- high resolution detectors for a precise measurement of ν_{τ} charged current (CC) interactions;
- large statistics for a sensitivity down to $P_{\mu\tau} \sim 10^{-4}$

optimal compromise for SBL designs with & large overall neutrino fluence (p.o.t.). high resolution light (few tons) targets

of previous massive calorimeters AND the precision of previous bubble chamber/emulsion experiments. $(\nu_{\mu}, \nu_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{e})$, which can match both the statistics The result is an unprecedent neutrino data sample

THE WANF NEUTRINO BEAM

• Mean distance from ν **source** $(\pi, K \text{ decay})$: NOMAD ~ 620m, CHORUS ~ 600m.

Wide Band Beam (WBB): broad energy spectra. ٠

Roberto Petti

CC interactions

abund.

1.0

0.025

0.015

0.0016

 $\simeq 5 \times 10^{-6}$

 $\langle E_{\nu} \rangle [GeV]$

43.8

42.8

58.3

54.5

1.0

THE ν_{τ} SEARCH AT CERN

APPEARANCE

Decay mode

 $\mu \bar{\nu}_{\mu} \nu_{\tau}$

 $e \bar{\nu}_e \nu_\tau$

 $h(n\pi^0)\nu_{\tau}$

 $3h(n\pi^0)\nu_\tau$

BR

17.4%

17.8%

49.5%

15.2%

Roberto Petti

Ø

Θ

CERN

THE DETECTORS AT CERN

Hybrid detector:

electronic detector

⇒ predict tracks BACK into emulsions;

active emulsion target

⇒ LOCALIZE interactions into emulsions.

Electronic detector:

high resolution tracking

 \implies mom. resolution ~3.5% (p<10GeV/c);

If fine-grained calorimeter $\Rightarrow \sigma(E)/E = 3.2\%/\sqrt{E[GeV]} \oplus 1\%.$

Detectors at CERN (1994-1998)

Neutrino beam

DATA SAMPLES COLLECTED

properties between two background The signal $u_{ au}$ **CC** has intermediate sources:

simple kinematic criteria \implies opposite requirements. Difficult to reject efficiently both background sources with

ISOLATION

Roberto Petti

CERN

signal bins are combined within the UNIFIED APPROACH, (G.F. Feldman & R.D. Cousins, Phys. Rev. D57 (1998) 3873). Independent measurements from different decay modes &

different

bins

are

considered

statistically independent.

BINI

BINH

BINII

lnλ

by different S/B ratios;

in the tail of $ln \lambda$, characterized

Roberto Petti

CERN

- define a signal region, THE "BOX", by optimizing the overall sensitivity to oscillations;
- data events falling inside the BOX CANNOT be analyzed until the bkgnd predictions are finalized;
- the τ⁺ search and the τ⁻ search outside the "BOX" are used as control samples for backgrounds.

	$\tau^- \to \nu_{\tau} + \left e^- \bar{\nu}_e \right $	$\tau^- \rightarrow \nu_{\tau} + $ hadrons		
Candidate selection	ONE candidate	MANY candidates		
	defined by particle ID	choice based on topology		
	$\Longrightarrow \sim 100\%$ purity	\implies 70 \div 90% purity		
Rejection of CC	MAINLY ν_e CC	UNIDENTIFIED $\nu_{\mu} \& \nu_{e} CC$		
		particle ID		
		+		
	kinematics	kinematics		
	\implies rejection $\mathcal{O}(10^4)$	\implies rejection $\mathcal{O}(10^6)$		
Rejection of NC	$\pi^0 \rightarrow \gamma e^+ e^-, \pi/K$ MISID.	hadrons inside jet		
	particle ID			
	+			
	kinematics	kinematics		
	\implies rejection $\mathcal{O}(10^5)$	\implies rejection $\mathcal{O}(10^5)$		
Selection efficiency	3.6%	$1 \div 2\%$		
Sensitivity range	loose isolation	tight isolation		
	small visible energy ($ u_{e}$ CC)			
	1)	\downarrow		
	high & low $\Delta m^2~(>0.8~eV^2)$	high Δm^2		

٦

Roberto Petti

CERN

Definition of the signal region:

Final results: NO EVIDENCE for oscillations

THE CHORUS ν_{τ} SEARCH

Location of primary vertex (Phase I):

PREDICTIONS

from the electronic detector

& loose preselection to reduce the scanning load:

- identification of primary MUONS;
- automatic scanning in the interface emulsion sheets & track extrapolation at the emulsion target.

BULK EMULSION

automatic scanning procedure:

- track disappearance defines the vertex plate;
- the vertex location efficiency is evaluated from Monte Carlo simulations and is cross-checked with real data.

Roberto Petti

CERN

	$\tau^- \to \nu_\tau + \mu^- \bar{\nu}_\mu$	$\tau^- \rightarrow \nu_{\tau} + $ 0 μ		
Kink search	search along a	search along		
	SINGLE track (μ)	MANY tracks (h's)		
Charm bkgnd.	$\bar{\nu}$ CC with mis	ssed primary lepton		
	ν CC with μ^+/h^+ wrong charge assignement			
	cē in NC wit	th D^+/D^0 missed		
	kink constraints	kink constraints		
		+		
		kinematics $(\Phi_{ au H} { m cut})$		
	\implies rejection $\mathcal{O}(10)$	\implies rejection $\mathcal{O}(10)$		
"White kink" bkgnd.		nuclear 1-prong interactions		
	-	without heavily ionizing tracks		
		kink constraints		
		+		
		kinematics $(\Phi_{ au H} { m cut})$		
		\implies rejection $\mathcal{O}(10)$		
Acceptance (vertex)	20%	8%		
Kink efficiency	38%	10%		
Selection efficiency	7.6%	0.8%		

NETSCAN location (Phase II):

 Pick up <u>all track segments</u> (q < 0.4 rad) in the scanning volume

(1.5 x 1.5 mm² ⁻ 8 plates)

• Offline analysis of emulsion data

Automatic microscope at CERN:

RESULTS OF THE ν_{τ} SEARCH

NO EVIDENCE for oscillations from the analysis of data:

NUMBER of observed events consistent with bkgnd.;

SHAPE of relevant distributions in good agreement with bkgnd.

CERN

Bartan Ostatan MAgata Data

ANA A
CHORUS
171

Analysis	Tot. bkg.	$N_{P=1}^{\tau}$	Data	_	Analysis		Bin	Tot. bkg.	$N_{P=1}^{\tau}$
$ u_{ au} \overline{ u}_{\mu} \mu $ $ u_{ au} 0 \mu$	0.11 ± 0.03 1.10 ± 0.33	5014 2004	0 0	_	ν _τ ν _e e ν _τ ν _e e	DIS DIS	 VI	$0.28^{+0.31}_{-0.09}$ 0.25 ± 0.09	948 1780
	$1.21\substack{+0.33 \\ -0.33}$	7018	0		$ u_{ au} h(0\gamma) $ $ u_{ au} h(0\gamma) $ $ u_{ au} h(0\gamma) $ $ u_{ au} h(1\gamma) $	DIS DIS DIS	 V 	$0.05^{+0.60}_{-0.03}$ $0.12^{+0.60}_{-0.05}$ $0.07^{+0.70}_{-0.04}$	288 1345 223
$\begin{cases} S_{\nu_{\mu} \to \nu_{\tau}} \\ L_{\nu_{\nu} \to \nu_{\tau}} \end{cases}$	$= 3.7 \times 10^{-4}$ $= 3.4 \times 10^{-4}$	90%CL 90%CL			$\nu_{\tau} h(1\gamma)$ $\nu_{\tau} h(2\gamma)$ $\nu_{\tau} h(1/2\gamma)$ $\nu_{\tau} h(0/1\gamma)$	DIS DIS DIS DIS	IV IV III IV	0.07 ± 0.04 0.11 ± 0.06 0.20 ± 0.70 0.20 ± 0.70 0.14 ± 0.70 0.14 ± 0.70	1113 211 707 1456
$P(\leq L)$ (T. Junk, NIM A	= 28% 1434 (1999) 435).			_	$\nu_{\tau} 3h$	DIS	V	$0.32_{-0.32}^{+0.57}$	675 8746
$\begin{cases} S_{\nu_{\mu} \rightarrow \nu_{\tau}} \\ L_{\nu_{\mu} \rightarrow \nu_{\tau}} \\ P(\leq L) \end{cases}$ (Feldman & Cou	= 3.4×10^{-4} = 2.1×10^{-4} = 29% sins, Phys. Rev. D	90%CL 90%CL	3873).	{	$ \begin{array}{c} S_{\nu_{\mu} \to \nu_{\tau}}^{\text{Total}} \\ L_{\nu_{\mu} \to \nu_{\tau}}^{\text{Total}} \\ P(\leq L) \end{array} $	=	2.5 > 1.6 > 37%	× 10 ⁻⁴ 90%	6CL 6CL

Roberto Petti

Data

0

0

0

0

0

0

0

1

0

0

1

THE NOMAD u_{μ} $\rightarrow \nu_e$ SEARCH

Motivated by the LSND result:

Relative abundance in the beam:

Different approaches to evaluate π , K contributions

Ŷ

<u>°</u>		<u>ь</u>	a)
Cross-check with	to extract $K^{\pm,0}$ co	Measured spectra	MONTE CARL
NA56-SPY	ontent;	of $\nu_{\mu}, \bar{\nu}_{\mu} \& \bar{\nu}_{\epsilon}$.0 simulations
measurement of K/π .		(not ν_{ε} !)	; (FLUKA+GEANT);

Roberto Petti

∜

polarity of u beam and with horn/reflector switched off compare flux calculations with data taken with reversed

 K_L^0 $\pi^-e^+\nu_e$ constrained by $\bar{\nu}_{\varepsilon}$ and $\bar{\nu}_{\mu}$ spectra

 μ^+

 $+ \overline{\nu}_{\mu} e^+ \nu_e$

constrained by u_{μ} at low $E_{
u}$

CERN

Systematic uncertainties reduced with ratio:

 $\mathcal{R}_{e\mu}\left(E_{
u}
ight)$ Шĝ *|# $\nu_e CC$ $\nu_{\mu} CC$ $\frac{Events}{Events} \left(E_{\nu} \right)$

capability of NOMAD. Search for the The analysis relies upon the excellent electron identification APPEARANCE

of ν_{ε} CC events with the energy distribution of ν_{μ} CC;

- ${}^{>}$ **BLIND** oscillation search is performed compare the $\mathcal{R}_{e\mu}$ distributions in MC and data ONLY after robust beam predictions;
- Systematics on predictions from the ν_{μ} , $\bar{\nu}_{\mu}$ and $\bar{\nu}_{e}CC$ comparison with beam profiles ($\sim 2\%$ norm., $\sim 5\%$ shape);

CERN

experiments at Gran Sasso The Long Baseline Ξ

MOTIVATIONS FOR CNGS

Sterile **n** disfavoured at ~ 99%

n_mdisappearance in K2K:

Expected (no osc.)80.6 + 7.3 - 8.0Detected56 (~ 2s effect)

Oscillation dip in the E_n spectrum at $Dm^2 \sim 3 \times 10^{-3} eV^2$?

n, appearance in Super-K

Poor S/B ratio ~ 0.7%, statistical significance ~ 2s

- the parameter region indicated by the measurements with A direct detection of the appearance of v_{τ} CC events in the atmospheric neutrinos by Super-Kamiokande requires:
- L/E in the range ≥ 40;
- energy thresold for τ production $E_{\nu} > 4$ GeV

artificial ν_{μ} beam from CERN to Gran Sasso with L = 732 km and $\langle E_{\nu} \rangle \sim 17$ GeV.

- ٠ The resulting Long Baseline design is very challenging for **ANY** ν_{τ} CC appearance experiment:
- high resolution for τ detection;
- limited fluence available at large distance from the neutrino source ($\sim 1/L^2$).
- need unprecedent high resolution massive detectors of kton scale $(SBL \times 10^3)$.
- ٠ the SBL experiments Practical construction and costs require the use of different technologies to fulfill the au detection principles developed in

approximately independent from L for $\frac{L/km}{E/GeV} \frac{\Delta m^2}{eV^2} \ll 1$. large distances ($\sim 1/L^2$), whereas the signal rate from oscillations is **Note:** S/B increases with L since the background is reduced at

THE CNGS NEUTRINO BEAM

• Mean distance from ν source (π ,K decay): OPERA, ICARUS ~ 732km.

• Wide Band Beam (WBB): spectra optimized to maximize ν_{τ} CC rate from oscillations

$\nu_{\mu}(m^{-2}/pot)$ ν_{μ} CC events/pot/kton $\langle E \rangle_{\nu_{\mu}}$ (GeV)	$7.45 imes 10^{-9}$ $5.44 imes 10^{-17}$ 17
$ar{ u}_{\mu}/ u_{\mu} $	2.1 %
$ \frac{\overline{\nu}_e}{\nu_{\mu}} $ $ \frac{\nu_{\tau}}{\nu_{\tau}} prompt$	0.07 % negligible

★ Long Baseline Experiments (LBL): $\langle L \rangle / \langle E \rangle \sim 40 \ Km/GeV$ $\implies \Delta m^2$ sensitivity in the range $\Delta m^2 \ge 10^{-3}$

THE ν_{τ} SEARCH AT GRAN SASSO

• APPEARANCE experiments. ν_{τ} is detected by CC interactions:

 $\nu_{\tau} + N \longrightarrow \tau^- + X$

identified by its decay properties:

₩

THE OPERA DETECTOR

Status of the experiment

- Approved as **CNGS1** in 2000
- Construction & test of full-scale prototypes completed

THE DONUT BENCHMARK

closeup view near the neutrino interaction

Structure:	OPERA E	CC =	DONUT ECC		
Material :	Lead	¥	Iron		
Better performance for physics analysis					

Test for the OPERA technology

THE OPERA ν_{τ} SEARCH

where the neutrino interaction occurred. The electronic detector is used to find the BRICK

 \implies the brick is extracted and developed for scanning.

Tracks are followed back in the brick to locate the primary VERTEX with a NETSCAN procedure (global scan)

already used by DONUT & CHORUS Phase II.

- The short decay topology \Longrightarrow long decay topology \Longrightarrow DECAY search is performed in two topologies: kink impact parameter
- ٠ ۰ The full event is reconstructed in order to perform a specific track momenta by Multiple tor T e. m. total track length; Coulomb Scattering (MS); KINEMATIC ANALYSIS shower energy from $\rightarrow \rho$ search. 퀴 reconstruction mm C of the selected events: i Ы ä ð electron pair Interaction point

Roberto Petti

1000

O

1000

2000 µm

Search for a kink with an angle $\mathbf{q}_{kink} > 20$ mrad

leptonic channels hadronic channels

t®e,m t®h,r

• Require large
$$P_T = P^* q_{kink}$$
 at 2ry vtx.

hadronic channels

leptonic channels >100, 250 Mev/c >600, 300 Mev/c

Additional kinematic cuts at 1ry vtx. for the hadronic channels $F_{t-H} > p/2$

 P_{t} miss < 1 GeV/c

Short decay topology:

- At least two additional 1ry tracks for vertex reconstruction
 P > 1.0 GeV/c
- Require a large impact parameter
 I.P. > 5 to 20 mm

leptonic channels **t ® e**, **m**

Additional kinematic cuts on minimal mass/P_T for n_eCC/charm rejection
 (P_T)_{min} > 50 Mev/c t ® e
 (M_{inv})_{min} > 3 GeV/c t ® m

Decay mode	Signal $1.6 \times 10^{-3} eV^2$	Signal $2.5 \times 10^{-3} eV^2$	$\frac{Signal}{4.0\times10^{-3}~eV^2}$	Bkgnd
$\tau \rightarrow e \log$	1.4	3.4	8.6	0.15
$\tau \rightarrow \mu \; \textit{long}$	1.3	3.2	8.1	0.29
au ightarrow h long	1.6	3.7	9.4	0.23
$\tau \rightarrow e \; {\it short}$	0.4	1.0	2.5	0.03
$\tau \rightarrow \mu \text{ short}$	0.2	0.5	1.3	0.04
Total	4.9	11.8	30.0	0.74

Number of signal and background events expected within the 90% CL Super-K allowed region (5 year run, 1800 t):

 Lead/emulsion sandwitch ⇒ better momentum measurement (MS) than CHORUS Passive material (Pb) ⇒ lower overall efficiency (short/long)

Experimental sensitivity (5 years, 1.8kt):

Uncertainties on background (±33%) and on efficiencies (±15%) included

Probability of ³ ns significance:

Schematic view of the Super-K allowed region

- Simulate a large number of experiments with oscillation parameters generated according to the Super-K probability distribution
- N_{ns} events are required for a **ns** significance
- Evaluate the fraction P_{ns} of experiments observing ³ N_{ns} events

Run	P _{3s} (%)	P _{4s} (%)
3 y	88	82
5 y	96	90

THE ICARUS DETECTOR

Basic element T600 LAr modules (TPC)
 Proposed baseline T600 + 2 * T1200 (3000 t)

THE ICARUS ν_{τ} SEARCH

upon kinematic criteria similar to Signal/background discrimination NOMAD: based

Deep-inelastic (DIS) and Quasi-elastic (QE) samples. he T ρ channel is exploited in the two independent

- Momentum $P_{\rho} > 5.0 \text{ GeV/c}$
- Invariant mass constraints
- Largest bkgnd from NC rejected by isolation (Q_T) in DIS
- Residual ν_{μ} CC bkgnd rejected by muon veto.

Number of signal and background events expected within the 90% CL Super-K allowed region (5 year run, 3000 t):

Decay mode	Signal $1.6 \times 10^{-3} eV^2$	Signal $2.5 \times 10^{-3} eV^2$	$\begin{array}{c} \textit{Signal} \\ 4.0 \times 10^{-3} \ eV^2 \end{array}$	Bkgnd
au ightarrow e	3.7	9.0	23.0	0.7
$\tau \rightarrow \rho \ DIS$	0.6	1.5	3.9	< 0.1
$\tau \rightarrow \rho \ QE$	0.6	1.4	3.6	< 0.1
Total	4.9	11.9	30.5	0.7

 \implies sensitivity to $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations similar to the OPERA experiment.

 Lower background & fully sensitive detector ⇒ larger efficiencies than NOMAD No charge measurement ⇒ the τ⁺ control sample is not available

THE ICARUS $\nu_{\mu} \rightarrow \nu_{e}$ SEARCH

Exploit the good electron identification

accessible via a sub-leading oscillation (three-v mixing): Main goal to constrain the mixing ۵ _ ۵ V26 L ANGLE θ_{13}

$$\begin{split} P(\nu_e \to \nu_\mu) &\sim \sin^2 \theta_{23} | \frac{\sin^2 \theta_{13}}{\sin^2 \theta_{13}} \frac{\sin^2 \left(\frac{1.27\Delta m_{13}^2 L}{E_\nu}\right)}{P(\nu_\mu \to \nu_\tau)} &\sim \cos^4 \theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{1.27\Delta m_{23}^2 L}{E_\nu}\right) & |\Delta m_{12}^2 | \ll |\Delta m_{23}^2 | \end{split}$$

Simultaneous fit to extract ν_{μ} the region $E_e > 1$ GeV and $E_{vis} < 20$ GeV. $\rightarrow \nu_e$ and ν_μ $\rightarrow \nu_{\tau}$ rates in

CONCLUSIONS

at the same time large statistics ($>10^6$) and high produced an unprecedent neutrino data sample, allowing resolution measurements. The short baseline program recently completed at CERN

 \implies large potential for neutrino physics.

- possible for a ν_{τ} appearance search: demonstrated that two different approaches are The short baseline neutrino experiments at CERN have
- ۰ The automatic emulsion scanning (CHORUS) is efficient thanks to the continuous advancements in the microscope technology;
- up to the extreme tails of the distributions. The kinematic method (NOMAD) is reliable and can be controlled

 \implies valid techniques for LBL experiments

- ٠ is currently under construction (to be completed by 2005). detection of the appearance of ν_{τ} CC events: The long baseline neutrino beam from CERN to Gran Sasso Two different detectors are foreseen at Gran Sasso for the
- OPERA is a hybrid emulsion-based experiment, approved as CNGS1 in 2000 (in preparation).
- ICARUS is an electronic detector based upon a LAr TPC (proposal).