Recent B Physics Results from the Tevatron

Manfred Paulini Carnegie Mellon University 23 January 2007 HEP Seminar DESY, Hamburg

- Introduction: Flavour Physics
- Fermilab, Tevatron and CDF
- Recent CDF Results: B Hadron Lifetimes
- B_S Oscillation Measurement
- CP Violation: B -> hh
- Discovery of Σ_b Baryon
- Conclusions

Note: Focus on CDF results

Mass & Energy

Composition of Universe: Don't know 95% of content of universe

Dark Energy: 67 ± 6%

Dark energy <=> Dark matter <=>

Mass & Energy

Dark Energy: 67 ± 6%

Dark energy <=> Dark matter <=>

Particle Physics:

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

A Brief History of Time

First fully reconstructed B mesons: CLEO 1983

First fully reconstructed B mesons at a hadron collider: CDF 1992 B⁺ → J/ψ K⁺

Quark transition described by CKM matrix V_{CKM}:

<u>Wolfenstein:</u> $V_{\rm CKM} =$

$$egin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta)\ -\lambda & 1-\lambda^2/2 & A\lambda^2\ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}+\mathcal{O}(\lambda^4)$$

Particular importance of b quark: Couples to all other quarks directly or via loops

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Our Program Today

- B Hadron Lifetimes
- B_s Oscillation Measurement
- CP Violation: B -> hh
- Discovery of Σ_b Baryon

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Fermilab, Tevatron and CDF

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Tevatron Performance

From Record to Record

• Dec. 2006: Best TeV month:

- Record monthly int. lumi 136.3 pb⁻¹
- Record weekly int. lumi 39.6 pb⁻¹

• Record initial luminosity:

27.8 x 10³¹ sec⁻¹ cm⁻² (Jan 19, 2007)

>1.8 fb⁻¹ on tape (~ 2.3 fb⁻¹ delivered)

~1-1.4 fb⁻¹ used for analysis

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Production of B Hadrons

Tevatron: $p\bar{p} \rightarrow b\bar{b}X$

• Lowest order $\mathcal{O}(\alpha_s^2)$ diagrams for $b\bar{b}$ production

(a)-(c) gluon-gluon fusion

(d) quark-antiquark annihilation

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Trigger for B Physics

- Lepton Trigger:
- **→** Dilepton trigger: $J/\psi \rightarrow \mu \mu$
- → Single lepton: Semileptonic B decays
- Lepton+displaced track: Semilept. B's
- Hadronic track trigger: CDF (D0)

(exploit 'long' B lifetime)

Level 1: Fast track trigger (XFT) finds charged track with $p_{\tau} > 1.5$ GeV/c

Level 2: Link tracks into silicon; require track impact parameter > 100 μ m (SVT)

Access to hadronic B decay modes

SVT impact parameter resolution:

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Recent CDF Results: B Lifetimes

B Hadron Lifetimes

- Lifetimes of b hadron study interplay between strong and weak interaction
- Important testbed for understanding non-perturbative effects in QCD
- Heavy quark expansion predicts \overline{B}^0 values for weakly decaying hadrons

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \cdot \left[A_0 + A_2 \left(\frac{\Lambda_{QCD}}{m_b} \right)^2 + A_3 \left(\frac{\Lambda_{QCD}}{m_b} \right)^3 + \cdots \right]$$

Theoretical lifetime predictions:

- $\tau(B^+)/\tau(B^0) = 1.06 \pm 0.02$
- $\tau(B_s^0)/\tau(B^0) = 1.00 \pm 0.01$
- $\tau(\Lambda_{h}^{0})/\tau(B^{0}) = 0.88 \pm 0.05$
 - C. Tarantino *et al* hep-ph/0310241

1 1

B Hadron Lifetimes

- Use 1.0 fb⁻¹ dimuon trigger data
- Measure lifetime in fully

reconstructed B -> J/ ψ X decays

- $B^+ \rightarrow J/\psi K^+$ (13k)
- $B^0
 ightarrow J/\psi K^{0*}$ (4.8k)
- $B^0
 ightarrow J/\psi K^0_s$ (3.6k)
- $\Lambda_b^0 \to J/\psi \Lambda$ (0.5k)
- $B^0_s \to J/\psi\phi$ (1.1k)
- Fully reconstructed decay
 - No missing momentum
- Take lifetime info from J/ ψ vertex
- Large B hadron signals

 $\tau(B^+)/\tau(B^0)$ ratio measurements

 $\tau (B^{+}) =$ (1.630 ± 0.016 ± 0.011) ps $\tau (B^{0}) =$ (1.551 ± 0.019 ± 0.011) ps $\tau (B^{+}) / \tau (B^{0}) =$ (1.051 ± 0.023 ± 0.004)

Very good <u>agreement</u> with world average and with theoretical predictions

B⁶, →J/∪ ¢ lifetime measurements

 $\tau (B_s^{0}) =$ (1.494 ± 0.054 ± 0.009) ps $\tau (B_s^{0}) / \tau (B^{0}) =$ (0.963 ± 0.047 ± 0.005)

Very good <u>agreement</u> with world average and with theoretical predictions

 $\tau(\Lambda_{h}) =$ $(1.580 \pm 0.077 \pm 0.012)$ ps $\tau(\Lambda_{h}) / \tau(B^{0}) =$ $(1.018 \pm 0.062 \pm 0.007)$ **Surprise:** ~3 σ above world average and above theoretical predictions => Measure Λ_{h} lifetime in hadronic mode $\Lambda_{h} \rightarrow \Lambda_{c} \pi$

Observation of B_S Oscillations

B_s Meson Oscillations

Two-State Quantum Mechanical System

 $B_s^0(\bar{b}s) \& \bar{B}_s^0(b\bar{s})$ Common decay modes! => 2-state QM system

Eigenstates of 2-state system (neglect CP violation)

Light (CP-even)
$$|B_{s,L}^{0}\rangle = \frac{|B_{s}^{0}\rangle - |\bar{B}_{s}^{0}\rangle}{\sqrt{2}}$$
 m_{L}, Γ_{L} mass & width
Heavy (CP-odd) $|B_{s,H}^{0}\rangle = \frac{|B_{s}^{0}\rangle + |\bar{B}_{s}^{0}\rangle}{\sqrt{2}}$ m_{H}, Γ_{H}
 $m_{s} = \frac{m_{H} + m_{L}}{2} \sim 5.37 \,\text{GeV}/c^{2}$ $\tau = \frac{2}{\Gamma_{L} + \Gamma_{H}} \sim 1.5 \,\text{ps}$
 $\Delta m_{s} = m_{H} - m_{L}$ $\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H}$
Start (t=0) with
particle \longrightarrow $|\psi(0)\rangle = |B_{s}^{0}\rangle = \frac{B_{s,L} - B_{s,H}}{\sqrt{2}}$ $(\Delta \Gamma = 0)$
 $|\langle \bar{B}_{s}^{0} | \psi(t) \rangle|^{2} = \frac{\Gamma e^{-\Gamma t}}{2} [1 - \cos(\Delta m_{s} t)]$ \longleftarrow Antiparticle
exists at time t!

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Analysis Strategy

What do we need for measurement of B_s mixing?

- (1) B signal reconstruction (semileptonic & fully reconstructed)
- (2) Determination of B decay time from decay length and momentum
- (3) Determination of B production flavour ("flavour tagging")

Some History

Beginning of 2006: Published results on B_S mixing:

Results from LEP, SLD, CDF I

$\Delta m_s > 14.4 \text{ ps}^{-1} 95\% \text{ CL}$

Some History

Reported at DESY in summer '06

April 2006: Result from CDF Collaboration

Since then goal has been to observe signal with > 5σ significance

Improvements since then

- Same data set (1 fb⁻¹)
- Proper decay time resolution unchanged
- Signal selection
 - Neural network selection for hadronic modes
 - Add partially reconstructed hadronic decays
 - Use particle id (TOF, dE/dx) (separate kaons from pions)
 - Looser kinematic criteria possible due to lower background
 - Additional trigger selection criteria allowed
- Production Flavor tag
 - Opposite-side tags combined using neural network
 - Also added opposite-side kaon tag
 - Neural network combines kinematics and PID in same-side Kaon tag

Improvements since then

Example: Fully reconstructed signal

Hadronic signal increased from 3600 to 8700

Improvements since then

Semileptonic Signals:

Semileptonic signal increased from 37000 to 61500

Result: Fit for Oscillation

Measured Value of Δm_s

 $\Delta m_s = 17.77 \pm 0.10~{
m (stat.)} \pm 0.07~{
m (syst.)}~{
m ps}^{-1}$

Corresponds to frequency of 3 trillion times a second

Significance of Result

Probability of Fluctuation:

Probability of random fluctuation determined from data

28 of 350 million random trials have L < -17.26

Probability = 8 x 10⁻⁸ (5.4σ)

Have exceeded standard threshold to claim observation

Measurement of CKM Matrix Elements

<u>Determination of</u> |V_{ts}| / |V_{td}| :

 $\left| rac{V_{td}}{V}
ight| = 0.2060 \pm 0.0007 \, (\mathrm{exp.})^{+0.0081}_{-0.0060} \, (\mathrm{theo.})$

CP Violation: B -> hh

(Charmless *B* -> hh

- CDF performed comprehensive analysis of charmless 2-body decays *B -> hh* (1 fb⁻¹ of data)
- Joint study of B⁰ and B_s decays

into $\pi\pi/K\pi/KK$ can shed light on SU(3) symmetry breaking

- Important to disentangle tree versus penguin contributions
- <u>Remember</u>: Direct CP violation in B decays first observed in B⁰ -> K π
- CDF uses 2-track hadronic trigger to collect large dataset of B -> hh
- Observe signal with offline confirmation of trigger cuts:
 - ~8500 B -> hh events in 1 fb⁻¹ of data
- Primary analysis goals:
 - Measure A_{CP}(B⁰ -> K⁺π⁻)
 - Measure rare decays: BR($B_s^0 \rightarrow K^-\pi^+$)

Charmless *B -> hh*

- Optimize cuts using signal MC and sideband backgrounds:
- 2 sets: Measure CP asymmetry in B -> K π (loose selection)
 - Search for rare decays $B_s \rightarrow K\pi$ & measure BR (tighter select.)
- Despite excellent mass resolution (~22 MeV) modes overlap
- BR measurements sensitive to CDF Run II Preliminary Lint=1 fb⁻¹ shape of mass resolution: 1600 20 MeV/c² ~6500 signal radiative tails 1400 events total CDF Run II Monte Carlo 1200 300 $B^0 \rightarrow K\pi$ Candidates per $B_{a}^{0} \rightarrow KK$ **Expected rare** 1000 $B^0 \rightarrow \pi\pi$ FSR tail on the modes: left of each peak $\rightarrow K\pi$ 800 affects BR $B_{a}^{0} \rightarrow \pi\pi$ $B^0 \to K\pi$, measurements $\rightarrow KK$ 600 $\Lambda_{b} \rightarrow pK$ $B^{0} \rightarrow \pi\pi$, $\Lambda_{\rm h} \rightarrow {\rm D}\pi$ 400 $\Lambda^0_{\rm b} \rightarrow p\pi/pK.$ 100 Combinatorial 200 $B_{s}^{0} \rightarrow K^{-}\pi^{+}$ backq. 50 5.2 5.3 5.5 5.4 5.8 5.3 5.4 5.5 5.6 5.7 5.2 5.8 5.1 Invariant $\pi\pi$ -mass [GeV/c²] Physics backg. Invariant $\pi\pi$ mass[GeV/c²]

Charmless *B -> hh*

- Disentangle overlapping modes by
 - Invariant mass information: $m(\pi\pi)$
 - Kinematic discriminates
 - $\alpha = (1-p_{min}/p_{max})q_{min}$ signed momentum imbalance

160

120

100

- PID through dE/dx
- Use 1.5 mio D* -> D⁰π, D⁰ -> Kπ to accurately calibrate dE/dx over tracking volume & time

CP Violation: *B*⁰ -> *K*⁺ π⁻

<u>Measurement of "raw" assymetry A_{CP}(B⁰ -> K⁺π)</u>

 $B^{0} \rightarrow h^{+}h^{-}$ yield like B factories, and unique large sample of $B_{s}^{0} \rightarrow h^{+}h^{-}$

$$A_{CP}\Big|_{\rm raw} = \frac{N_{\rm raw}(\overline{B}^0 \to K^- \pi^+) - N_{\rm raw}(B^0 \to K^+ \pi^-)}{N_{\rm raw}(\overline{B}^0 \to K^- \pi^+) + N_{\rm raw}(B^0 \to K^+ \pi^-)} = -0.092 \pm 0.023$$

CP Violation: *B*⁰ -> *K*⁺ π⁻

After correcting for K⁺/K⁻ interaction rate asymmetry and evaluating systematic effects, find:

Second best single measurement of $A_{CP}(B^0 \rightarrow K^+\pi^-)!$

 $BR(B_{s}^{0}\rightarrow K^{+}K^{-})$ and $BR(B^{0}\rightarrow \pi^{+}\pi^{-})$ are becoming high precision measurement. Theoretical expectations are not completely in agreement.

[Matias et al. PRL97, 061801, 2006] $BR(B_{s}^{0} \rightarrow K^{+}K^{-})/BR(B^{0} \rightarrow K^{+}\pi^{-}) \sim 1$

[Khodjamirian et al. PRD68:114007, 2003] predict large SU(3) breaking ~2 <--- Disfavored by CDF.

Charmless *B -> hh*

Search for rare modes:

Charmless *B -> hh*

<u>First observations:</u> $\Lambda_b^0 \rightarrow p \pi^- \& \Lambda_b^0 \rightarrow p K^-$

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Observation of Σ_b **Baryon**

Observation of Σ_{b} **Baryon**

Motivation:

- Λ_b only established **B** baryon
- Next accessible baryons: $= 3/2^+ (\Sigma_b^*)$ Σ_b : $b\{qq\}, q = u,d; J^P = S_Q + S_{qq}$ $= 1/2^+ (\Sigma_b)$

- HQET well tested for meson systems; check predictions for Qqq systems

Manfred Paulini - HEP Seminar, DESY, Hamburg, 1/23/07

Observation of Σ_b **Baryon**

Search Strategy:

Use 2 track trigger to reconstruct: $\Lambda_b^0 \to \Lambda_c^+ \pi^-$

- Σ_b decays at primary vertex
- Combine Λ_b with a prompt track to form a Σ_b candidate
- Separate Σ_{b}^{-} and Σ_{b}^{+} : $\Sigma_{b}^{(*)-} \rightarrow \Lambda_{b}^{0}\pi^{-} \rightarrow \Lambda_{c}^{+}\pi^{-}\pi^{-}$ $\Sigma_{b}^{(*)+} \rightarrow \Lambda_{b}^{0}\pi^{+} \rightarrow \Lambda_{c}^{+}\pi^{-}\pi^{+}$
- Search for resonances in mass diff.:

 $\mathbf{Q} = \mathbf{m}(\Lambda_b \pi) - \mathbf{m}(\Lambda_b) - \mathbf{m}_{\pi}$

• Optimize Σ_b cuts with Σ_b signal region blinded: 30 < Q < 100 MeV/c²

- Σ_{b} backgrounds:
 - Λ_b hadronization + underlying event – Dominant!
 - B meson hadronization
 - Combinatorial background

Fix background contributions from data or PYTHIA MC

$$m(\Sigma_b^-) - m(\Lambda_b^0) - m_\pi = 55.9^{+1.0}_{-1.0} \text{ (stat) } \pm 0.1 \text{ (syst) } \text{MeV/c}^2 m(\Sigma_b^+) - m(\Lambda_b^0) - m_\pi = 48.4^{+2.0}_{-2.3} \text{ (stat) } \pm 0.1 \text{ (syst) } \text{MeV/c}^2 m(\Sigma_b^*) - m(\Sigma_b) = 21.3^{+2.0}_{-1.9} \text{ (stat) } ^{+0.4}_{-0.2} \text{ (syst) } \text{MeV/c}^2$$

Conclusions

- Tevatron offers rich heavy flavour program
- Some recent results include
 - Lifetimes: Λ_b^0 lifetime measured ~3 σ higher than world avg.
 - Mixing: Observation of B_S⁰ oscillations
 - CP violation:
 - * New results from charmless B -> hh decays
 - * Competitive measurement of $A_{CP}(B^0 \rightarrow K^+\pi)$
 - * Observation of rare charmless Λ_b^{0} decay modes
 - Observation of $\Sigma_{\textit{b}}$ baryon states

As part of their campaign to proactively incentivise their members,

the philosophers club initiated a food for thought program.