Search for physics beyond the Standard Model at LEP 2

Theodora D. Papadopoulou

NTU Athens

DESY Seminar 28/10/03

- Introduction about LEP
- Alternatives to the Higgs mechanism
- Technicolor
- Contact Interactions
- Leptoquarks
- **R-parity Violation**
- Extra Dimensions
- Conclusion
- As an Epilogue

e⁺ e⁻ Collider at CERN **12 years** of data collection with excellent performance ! GERR 1.3 515 OFAL ALEPH LEP

$$\sqrt{s} \approx 91 \, GeV \, (1989 - 1995)$$

$$\sqrt{s} \approx 130 - 136 \, GeV \, (1995)$$

$$\sqrt{s} \approx 161 - 209 \, GeV \, (1996 - 2000)$$

•ALEPH, DELPHI, L3, OPAL

LEP Performance

The updates and combinations of the final results are at the last stage

LEP Working Groups : for combination of measurements

LEP Performance

Integrated luminosities in pb $^{-1}$								
	ALEPH	DELPHI	L3	OPAL	LEP			
$\sqrt{s} \geq$ 189 GeV	629	608	627	596	2461			
$\sqrt{s} \geq$ 206 GeV	130	138	139	129	536			
$\sqrt{s} \geq$ 208 GeV	7.5	8.8	8.3	7.9	32.5			

LEP 2 : E_{cm} = 161 – 209 GeV Total int. Lum ~ 2.5 fb⁻¹ (ADLO)

• High precision extensive tests of the SM have been achieved to ~ 0.1 %

DESY 28 Oct. 2003

Th. D. Papadopoulou

Summer 2003 - LEP Preliminary

Summer 2003 - LEP Preliminary

 m_w (LEP) = 80.412 \pm 0.029 (stat) \pm 0.031 (sys) GeV $\Gamma_{\rm w}$ (LEP) = 2.150 \pm 0.068 (stat) \pm 0.060 (sys) GeV

- Elementary Higgs Spontaneous Symmetry Breaking
 - SM Higgs (1 Higgs doublet)
 - MSSM Higgs , 2HDM (2 Higgs doublets)

ex: Search for Fermiophobic Higgs

- other models

• Dynamical Symmetry Breaking

(Compositeness)

- Technicolor
- Chiral Color Theories (High Color scenario)

ex: Search for Axigluons

Physics beyond SM

Experimental results ?

2HDM – Model : 2 – Higgs – doublet

Type 1 – Model : One doublet couples to fermions, the other to bosons

2 CP even neutral Higgs bosons : h (light), H (Heavy)

- \bullet mixes with scalar field with angle α
- coupling to fermions is $\cos(\alpha)$ for h & $\sin(\alpha)$ for H Therefore \Rightarrow h is fermiophobic in the limit $\alpha \rightarrow \pi / 2$

We search for the light h :

- > h Z with h $\rightarrow \gamma\gamma$, Z $\rightarrow qq$, 11, vv
- \succ h A with h $\rightarrow \gamma\gamma$, A \rightarrow bb
- > h A with h $\rightarrow \gamma\gamma$, A $\rightarrow hZ$, Z $\rightarrow qq$

Fermiophobic Higgs

Fermiophobic Higgs

hA production: searched for

• $hA \rightarrow \gamma \gamma bb$

- New (strong) interactions : $(\Lambda_{TC} >> \Lambda_{QCD})$ Technifermions T (coupled to W, Z)
- Alternative to Higgs Mechanism EW symmetry is broken dynamically
- But there are problems:
 - precision measurements of EW quantities
 - **mass of top quark**
 - flavour-changing neutral currents (FCNC)
- Extensions of TC solve the problems: "topcolor-assisted technicolor" (TC2)

- New particles : Technicolor scalar π_T and vector meson ρ_T light enough to be observed at LEP
- N_D techidoublets
- 1) Search for $\pi_{\rm T}$

$$e^+ e^- \longrightarrow \rho_T^* \longrightarrow W_L \pi_T$$
, $\pi_T \pi_T$
4 jet final state
semileptonic decays : $l v q q$
 $\tau v q q$

Technicolor

- 2) Search for ρ_T

additional contribution to W⁺ W⁻ cross section

Technicolor with DELPHI

Technicolor

Comparison between LEP 2 and CDF Exclusion Plots

signatures of conventional compositeness at LEP 2-> Contact interactions

preliminary

EP

DESY 28 Oct. 2003

Th. D. Papadopoulou

200

220

 $\Lambda > 9$ TeV

• appear in many unification theories beyond the SM (GUT, Compositeness, TC, Superstring theories- E_6)

 Color-triplet bosons with Couplings to quarks and leptons

• Scalars (S) and Vectors (V) ; F=0 $(e^{-1} \bar{q})$ and F=2 $(e^{-1} q)$ F=3B+L

• Only family diagonal Couplings (to avoid FCNC processes) — LFV also considered (HERA)

• Chirality conserving LQ (Very strong bounds from rare decays) \implies 14 species (7 Scalars and 7 Vectors) (BRW effective model: 6 isospin singlets, 6 doublets and 2 triplets) e(μ) b • Pati-Salam LQ

Search for $B_s \to e \ \mu$ decay

 $(\mathrm{CDF}:M_{LQ}(B_s)>19.3~\mathrm{TeV}~\mathrm{at}~95~\%~\mathrm{CL}~)$ s

μ(e)

Leptoquark at LEP 1

 $m_{LQ} > 65 GeV (1rst-gen)$ $m_{LQ} > 73 GeV (2nd-gen)$ at 95 % CL

Single LQ production gives the opportunity to explore a mass region up to ~ 80 GeV/c²

DELPHI

NTU-Athens

Th. D. Papadopoulou

$au(e^+e^- o S_{LQ} + X) = \int_{M_{LQ}^2/s}^1 (dx/x) \, f_{\gamma/\epsilon}(x,s) \, f_{q/\gamma}(M_{LQ}^2/(xs), M_{LQ}^2) \, \hat{\sigma}$

Bromi	**	GeV.	F]~~- 1000	Act	7	0 2 0 70	54 89 T	å v	30 10 80			u v v	
	a = 1 - a			3		۰.	~ ^-		• •					• ,
				1 +	Beact	_	۰.	٠	۰_	۰.	•	_	۰	•
						•	• [9 I	0 1	• 1	0 1	E	O I	-01

÷

$$E_{CM} \cong 200 \; GeV$$

Signature : e⁻ + jet => M (e j) ~ 180 GeV

$$\sigma_{LQ} (|Q| = 1/3, 5/3) > \sigma_{LQ} (|Q| = 2/3, 4/3)$$

Scalar

> Like four fermion contact interactions at scale $\Lambda >> \sqrt{s}$ * Limits on LQ Couplings up to high values ; $m_{LQ} >> \sqrt{s}$

LO limits

From EPS-2003, A. Zarnecki

• What is **Rp** and why go beyond ?

> a discrete multiplicative symmetry in SUSY models connected to matter parity

$$R_{p} = (-1)^{2S+3B+L}$$

 $\mathbf{R}_p = \mathbf{1}$ for SM particles

 $\mathbf{R}_p = -1$ for SUSY particles

- **o** SUSY particles produced in pairs
- o LSP is stable
- о experimental signature of SUSY Ет miss
 - → fast proton decay is suppressed

- Rp can be explicitly broken by trilinear terms in the superpotential $W = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$ $\Delta L \neq 0 \qquad \Delta L \neq 0 \qquad \Delta B \neq 0$ 9 Couplings $(i \neq j)$ $\overline{i^{\pm}(\overline{v})}_{-\lambda} \underbrace{\sqrt{v^{(l'^+)}}_{l'^{\pm}(l^-)}} = \overline{q^{(\overline{l},\overline{v})}}_{-\lambda'} \underbrace{\sqrt{q'}}_{q'} = \frac{q}{-\lambda''} \underbrace{q^{(\overline{l},\overline{v})}}_{\overline{q'}}$
 - **o** single sparticle production via a $\Delta L \neq 0$ or a $\Delta B \neq 0$ operator
 - o Unstable LSP !
 - **o** Signature of multilepton or multijet events in excess
 - → fast proton decay is suppressed if Lepton and Baryon number Violating Couplings not simultaneously present

Decay topologies

 $9 \lambda_{ijk} + 27 \lambda_{ijk} + 9 \lambda_{ijk} = 45$ new couplings

Hierarchies in RpV Couplings expected (as for Yukawa Couplings generating fermion masses)

• direct decays

• indirect decays

Decay Length of $\widetilde{\chi}_1^0$

$$L \approx \frac{1}{\lambda^2} \left(\frac{m_{\tilde{f}}}{100 GeV} \right)^4 \left(\frac{1 GeV}{m_{\tilde{\chi}}} \right)^5$$

• LEP analyses are sensitive only if the LSP has a negligible lifetime (L < 1 cm)

>
$$m_{\tilde{x}} > 10 \, GeV$$

~ 10 ⁻⁵ < λ < 10 ⁻² -1

Displaced Vertices $< \lambda <$ **indirect SM bounds**

- > Suppose one Coupling $\lambda_{ijk} (\hat{ }) \neq 0$
- Consider that many channels have to be combined
- > Optimize Signal selection on various topologies
 - --with sequential cuts : ALEPH, OPAL, L3, DELPHI $(LL\overline{E})$
 - --using lepton identification and lepton isolation criteria $(LL\overline{E}\ ,\ LQ\overline{D})$
 - -- with neural network methods : DELPHI $(\overline{U} \ \overline{D} \ \overline{D})$
 - -- using jet algorithm, b tagging $(LQ\overline{D}, \overline{U} \overline{D} \overline{D})$
- Calculate signal reconstruction efficiency
 - -- optimization on different mass combinations depending on the decays and the kinematics
- If no significant deviation from the SM, set 95 % CL limits on: *cross-sections * couplings and sparticle masses * exclusion plots in the MSSM

CMSSM

 μ , tan β , m_0

Minimal SUSY scenario :

- Topologies predicted in a Constrained MSSM =>
- gaugino mass unification ($M_1 \approx 0.5 M_2$) at EW scale
- Mass universality at GUT scale =>
- Trilinear terms are set to $0 => A_{b,t,\tau} = 0$
- Mixing angles for stop and sbottom => $\phi_{\tilde{t}}$, $\phi_{\tilde{b}}$

Bounds on RpV Couplings at EW scale:

 λ : ~ 5. 10⁻² λ : ~ 2. 10⁻² (131) up to 0.56 (232)

 λ'' : ~ 0.5 up to ~1.23 (except $\lambda''_{112} = \lambda''_{121} \sim O(10^{-9}), \lambda''_{131} = \lambda''_{113} = 10^{-4}$)

(for a sparticle mass of 100 GeV/c^2)

• single sneutrino $\widetilde{V}_e, \widetilde{V}_\mu, \widetilde{V}_\tau$ production : $e \gamma \rightarrow \widetilde{V}_j l_k$ ALEPH

- Couplings λ_{1jk} and λ_{231}
- multi lepton final states

(direct / indirect)

→ 6 analyses

Upper limits on λ ~ 7. 10⁻³ - 3. 10⁻²

• Final states

	$LL\overline{E}$	$LQ\bar{D}$	${ar U}{ar D}{ar D}$
${\widetilde \chi}^0 {\widetilde \chi}^0$	4l+ ₽	1, 2l + 4j + I	6j
$\widetilde{\chi}^{\pm}~\widetilde{\chi}^{\pm}$ (dir.)	2, 4, 6l + D	$1, 2l + 4j \neq k$	6j
$\widetilde{\chi}^{\pm}~\widetilde{\chi}^{\pm}$ (ind.)	$\begin{array}{l} \widetilde{\chi}^{0}\widetilde{\chi}^{0} + WW \\ \geq 4l + nj + \not \!$	$\begin{split} \widetilde{\chi}^0 \widetilde{\chi}^0 + WW \\ \geq 4j + nl + \not \!$	$\begin{array}{l} \widetilde{\chi}^{0}\widetilde{\chi}^{0} + WW \\ \geq 6j + nl \end{array}$

• $\widetilde{\chi}^{\pm}$ indirect decay is the dominant decay channel in almost all the MSSM parameter space

Limits in MSSM parameter space

• Mass limits at 95 % CL in GeV/c²

	λ	λ	λ΄
$\widetilde{\boldsymbol{\chi}}_{i}^{0}$ L	40.2		39.9
D	39.5	—	38.0
$\widetilde{\chi}_2^0 \mathbf{L}$	84.0	—	80.0
$\widetilde{\chi}_3^0$ L	107.2	—	107.2
$\widetilde{\boldsymbol{v}}^{\pm}\mathbf{A}$	103	103	103
$^{\prime 1}$ D	103		102.5
L	103.0	_	102.7

slepton pair production

slepton pair production

 $\widetilde{\mathcal{V}}_{e}, \widetilde{\mathcal{V}}_{\mu}, \widetilde{\mathcal{V}}_{\tau}$

• Direct decay:
$$e^+ e^- \rightarrow \widetilde{\nu} \ \widetilde{\nu} \rightarrow 4 \ fermions$$

• Indirect decay: $e^+ e^- \rightarrow \nu \nu \ \widetilde{\chi}_1^0 \ \widetilde{\chi}_1^0 \rightarrow 8 \ fermions(2\nu)$

100

Squark pair production

- **RpV** has inspired new interesting scenarios of SUSY searches
- **RpC** and **RpV** are two complementary ways of SUSY searches
- Searches for SUSY with RpV performed by all LEP collaborations (ADLO) in ...many channels
- No evidence for SUSY with RpV so far at LEP
- Limits on SUSY particles and RpV Couplings are set at 95% CL
- Limits from RpV are in the majority of cases more conservative than the RpC ones

•Why extra dimensions ?

- Why not ? String people believe that d = 10
- Extra dimensions compact on some size $R \sim 1 / M_p$
- Why is gravity so weak ? $M_P = \sqrt{1/G_N} \sim 10^{18} \text{ GeV}$

Scenario

- > SM particles are confined to 3 + 1 space time dimension
- **>** Gravity propagates in $4 + \delta$ dimensions

> Gauss law must work in 4 and $4 + \delta$ dimensions

$$\frac{1}{M_{_{P}}^{^{2}}r^{^{2}}} \qquad vs \qquad \frac{1}{m_{_{D}}^{^{\delta+2}}r^{^{\delta+2}}}$$

• M_D is the fundamental Planck scale when r = R

• Hence
$$M_P^2 \approx M_D^{\delta+2} R^{\delta}$$

• If $M_D \sim 1 \text{ TeV}$, we have

 $\delta = 1 \rightarrow R = 10^{13} \text{ m} \rightarrow$ excluded by macroscopic gravity

 $d = 2 \rightarrow R = 1.0 \text{ mm} \rightarrow \text{limit of small-scale gravity experiments}$

 $d = 7 \rightarrow R = 1.0 Fm$

=> Extra dimensions are compactified over R < 1 mm

Arkani-Hamed, Dimopoulos, Dvali (ADD)

Our world is (4 + d) dimensional SM fields live on a 4 – brane while

styl fields live on a 4 – brane while gravity can propagate in the d extra compactified dimensions(" bulk ")

- > The gravity is strong in the "bulk" but weak at the 4-brane
- **R** can be large (~1 mm)

 \Rightarrow Infinite tower of KK excitations of Graviton G ^k

investigation in the production cross-section of $t \bar{t}$ pairs at the LHC

Extra - Dimensions

Preliminary LEP Averaged $d\sigma/d\cos\Theta(e^+e^-)$ **Indirect Search** in LEP 207 GeV -- $M_{\mu}=1.0 \text{ TeV}, \lambda=+1$ Virtual G Exchange : 1.1 $e^+e^- \to G^* \to f\bar{f}$ 1.05 Cross Section (nb) 0.05 0.04 0.03 Ratio Data / SM e^{*}e'⇒e^{*}e' L3 profinitiony 1 0.95 0.02+ Data SM $M_{e}=0.75 \text{ TeV}, \lambda=+1$ 0.9 $\lambda = -1$ — M_=0.75 TeV, λ=-1 ---- Mu=1.0 TeV, λ=-1 0.01 $\lambda = +1$ 140 180 200 160 -0.8 -0.6 -0.4 -0.2 0 0.20.4 0.6 0.8 √s (GeV) **Best fit** $\cos\Theta_{\rm c}$

DESY 28 Oct. 2003

Th. D. Papadopoulou

OPAL preliminary $M_D (\lambda =+1) > 1.03 \text{ TeV}$ $M_D (\lambda =-1) > 1.17 \text{ TeV}$

- Results from 4 LEP experiments are consistent and in good agreement with each other.
- Preliminary LEP combined results are in good agreement with SM expectations
- No evidence for New Physics at LEP

•Interesting new physics is expected to appear at the TeV range at LHC & NLC

