A Departure From Prediction: Electroweak Physics at NuTeV

Kevin McFarland University of Rochester / Fermilab for the NuTeV Collaboration

<u>Outline</u>

- 1. Our surprising result
- 2. Neutrinos and the weak neutral current
- 3. Technique
- 4. The NuTeV Experiment
- 5. The data sample
- 6. Experimental and theoretical simulation
- 7. Electroweak fits
- 8. Interpretation and conclusions

The NuTeV Collaboration

G. P. Zeller⁵, T. Adams⁴, A. Alton⁴, S. Avvakumov⁸, L. de Barbaro⁵, P. de Barbaro⁸, R. H. Bernstein³, A. Bodek⁸, T. Bolton⁴, J. Brau⁶, D. Buchholz⁵, H. Budd⁸, L. Bugel³, J. Conrad², R. B. Drucker⁶, B. T. Fleming², R. Frey⁶, J.A. Formaggio², J. Goldman⁴, M. Goncharov⁴, D. A. Harris⁸, R. A. Johnson¹, J. H. Kim², S. Koutsoliotas², M. J. Lamm³, W. Marsh³, D. Mason⁶, J. McDonald⁷, K. S. McFarland^{8,3}, C. McNulty², D. Naples⁷ P. Nienaber³, A. Romosan², W. K. Sakumoto⁸, H. Schellman⁵, M. H. Shaevitz², P. Spentzouris², E. G. Stern², N. Suwonjandee¹, M. Tzanov⁷, M. Vakili¹, A. Vaitaitis², U. K. Yang⁸, J. Yu³, and E. D. Zimmerman² ¹University of Cincinnati, Cincinnati, OH 45221 ²Columbia University, New York, NY 10027 ³Fermi National Accelerator Laboratory, Batavia, IL 60510 ⁴Kansas State University, Manhattan, KS 66506 ⁵Northwestern University, Evanston, IL 60208 ⁶University of Oregon, Eugene, OR 97403 ⁷University of Pittsburgh, Pittsburgh, PA 15260 ⁸University of Rochester, Rochester, NY 14627

The Result

NuTeV Measures:

$$\sin^2 \theta_W^{\text{(on-shell)}} = 0.2277 \pm 0.0013(\text{stat.}) \pm 0.0009(\text{syst.}) \\ - 0.00022 \times (\frac{M_{\text{top}}^2 - (175 \text{ GeV})^2}{(50 \text{ GeV})^2}) \\ + 0.00032 \times \ln(\frac{M_{\text{Higgs}}}{150 \text{ GeV}})$$

cf. standard model fit (LEPEWWG), 0.2227 ± 0.00037

A discrepancy of 3σ ...

Electroweak Theory

Unification of Weak and Electromagnetic Forces

- SU(2) group: "weak isospin" \Rightarrow isotriplet of gauge bosons
- U(1) group: "weak hypercharge" \Rightarrow single gauge boson

Electroweak Lagrangian:

$${\cal L} = g ec{J}_{\mu} \cdot ec{W}_{\mu} + g' J^Y_{\mu} B_{\mu}, \ J^Y_{\mu} = J^{
m em}_{\mu} - J^{(3)}_{\mu}.$$

Physical Particles are: W^{\pm} , Z^{0} , photon

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (W_{\mu}^{(1)} \pm i W_{\mu}^{(2)}).$$

photon_{\mu} = $\frac{1}{\sqrt{g^2 + g'^2}} (g' W_{\mu}^{(3)} + g B_{\mu}),$

so that the photon couples only to the electromagnetic current. And what remains is:

$$Z^0_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} (gW^{(3)}_{\mu} - g'B_{\mu}).$$

Lagrangian in terms of physical bosons can be used to relate unification parameters to low energy measurements. Let $g' \equiv g \tan \theta_W$; then:

$$e=g\sin heta_W$$
, $G_F=rac{g^2\sqrt{2}}{8M_W^2}$, $rac{M_W}{M_Z}=\cos heta_W$

Electroweak Theory (cont'd)

- $\alpha_{
 m em}$, known to 45 ppb (but only to 200 ppm at $Q^2 \sim M_Z^2$)
- G_F , known to 10 ppm
- M_Z , known to 23 ppm

- Radiative corrections large, well-understood
- Gives a large m_t , m_H dependence of boson masses

Precision Tests of EW Theory

- Z^0 Bosons from e^+e^- collisions at LEP and SLC $\hookrightarrow m_Z, \Gamma_Z$, asymmetries in Z^0 decay
- W^{\pm} Bosons at the Tevatron and LEP II $\hookrightarrow m_W$, Γ_W
- *v*-Nucleon Deeply Inelastic Scattering!
- Atomic Parity Violation and Polarized Electron Scattering ($\gamma - Z$ Interference)

Why test in so many processes?

- 1. Testing in a wide range of processes and momentum scales ensures universality of the electroweak theory
- 2. Hope to observe new physics in discrepancies among measurements
 - Loop corrections
 - Tree level contributions

Why is NuTeV the Right Instrument for the Job?

An instant later, both Professor Waxman and his time machine are obliterated, leaving the cold-blooded/warm-blooded dinosaur debate unresolved

NuTeV is precise

 $\hookrightarrow M_W$ from NuTeV comparable to collider precision

 NuTeV is sensitive to different new physics from other precision experiments

 \hookrightarrow Measurement is off Z pole

 \star l.e., exchange is not guaranteed to be a Z!

 \hookrightarrow Neutral current neutrino couplings

 \star LEP I invisible width is only other precise measurement

- → Light quark neutral current coupling
 - \star Also atomic parity violation, TeVatron Z production

Cull the Herd

(Separate the Weak from the Strong)

- The problem:: QCD controls your targets
- $q(x,Q^2), \ \overline{q}(x,Q^2)$ enter into cross-sections

 $x \equiv$ fractional parton momentum;

 $Q^2 = -q^2$, q is boson 4-momentum

 Charged-current and neutral-current have same target \Rightarrow cross-section ratios!

Exploit

- Isoscalar Valence
- Symmetry: (if $u_v^p = d_v^n$, follows from heavy target)
 - Isoscalar Sea $(u_s \approx d_s)$

Heavy Quark Effects

Charged-Current Production of Charm

- Suppression of CC cross section for interactions with massive charm quark in final state
- Modeled by leading-order slow-rescaling

$$\xi = x(1 + \frac{mc^2}{Q^2})$$
 where $x = \frac{Q^2}{2ME_{\text{had}}}$

• Parameters of model and strange sea measured by NuTeV/CCFR in dimuon events $c \rightarrow \mu X$

νN Experiments Before NuTeV

$$\sin^2 \theta_W^{\text{on-shell}} \equiv 1 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0036$$

$$\Rightarrow M_W = 80.14 \pm 0.19 GeV$$

All other experiments are corrected to NuTeV/CCFR m_c and to large $M_{
m top}~(M_{
m top}>M_W)$

Results are limited by large correlated uncertainty \Rightarrow technique has hit a brick wall

NuTeV's Technique

Charm Production and Charm Sea Errors are Large \Rightarrow Need a Technique Insensitive to Sea Quarks

Paschos-Wolfenstein Relation:

$$R^{-} = \frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\overline{\nu}}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\overline{\nu}}}$$
$$= \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

Interaction Total Spin $\frac{d\sigma}{dy}$ $\nu - q$: or $\overline{\nu} - \overline{q}$ 0 1 $\overline{\nu} - q$: or $\nu - \overline{q}$ 1 $(1 - y)^2$ $2(1 - y) = 1 + \cos^2 \theta^*$

- R^- manifestly insensitive to sea quarks
 - \hookrightarrow Massive quark production enters from d_V quarks only (Cabbibo suppressed and at high x)
 - \hookrightarrow Charm, strange sea errors negligible
- Requires Separate ν and $\overline{\nu}$ Beams \Rightarrow NuTeV SSQT

- Beam is almost purely ν or ν
 :
 (ν in ν mode 3 × 10⁻⁴, ν in ν mode 4 × 10⁻³)
- \bullet Beam is ${\sim}1.6\%$ electron neutrinos

νN Deep Inelastic Scattering at NuTeV

- 168 Fe plates (3m \times 3m \times 5.1cm)
- 84 liquid scintillation counters Trigger the detector Visible energy Neutrino interaction point Event length
- 42 drift chambers Localized transverse shower position

Toroidal Spectrometer:

• 15kG field $(P_T = 2.4 \, GeV/c)$

<u>Continuous Test Beam</u>: interspersed with ν beam

• Hadron, muon and electron beams Map toroid and calorimeter response

2" Steel

Drift Chamber

Scintillator

Summary of Corrections to R_{exp}

Corrections Applied to Data			
Effect	$\delta R^{ u}_{ m exp}$	$\delta R^{\overline{ u}}_{\mathrm{exp}}$	Coping Techniques
Cosmic Ray Background	-0.0036	-0.019	+
Beam μ Background	+0.0008	+0.0012	†
Vertex Efficiency	+0.0008	+0.0010	†

\sim 1.4 1

Effects in Monte Carlo that relate $R^{(-)}_{\nu}$ to $R^{(-)}_{\nu}_{\nu}$

Effect	$\delta R^{ u}_{ m exp}$	$\delta R^{\overline{ u}}_{\mathrm{exp}}$	Coping Techniques
Short CC Background	-0.068	-0.02 <mark>6</mark>	† , 🗸
Electron Neutrinos	-0.021	-0.024	月, 🗸
Long NC	+0.0028	+0.0029	†, 🗸
Counter Noise	+0.0044	+0.0016	†
Heavy m_c	-0.0052	-0.0117	† , ♣
R_L	-0.0026	-0.00 <mark>9</mark> 2	†, ♣
EM Radiative Correction	+0.0074	+0.01 <mark>0</mark> 9	
Weak Radiative Correction	-0.00 <mark>0</mark> 5	+0.0058	
d/u	-0.00 <mark>0</mark> 23	-0.00 <mark>0</mark> 23	Ť
Higher Twist	-0.00012	-0.00013	†

Recall: $R_{\mathrm{exp}}^{
u}$ and $R_{\mathrm{exp}}^{\overline{
u}}$ measured to a precision of 0.0013 and 0.0027, respectively

Key to coping techniques

- Determined from data +:
- √: Checked with data↓: Independent Simulation
 - R^- technique

From Corrections to Uncertainties

• Theoretical model uncertainties dominate $R^{
u}_{
m exp}$, $R^{\overline{
u}}_{
m exp}$

• R^- technique $\Rightarrow \sin^2 \theta_W^{(\text{on-shell})}$ statistically dominated

SOURCE OF UNCERTAINTY	$\delta \sin^2 heta_W$	$\delta R^{\nu}_{ m exp}$	$\delta R^{\overline{ u}}_{\mathrm{exp}}$
Data Statistics	0.00135	0.00069	0.00159
Monte Carlo Statistics	0.00010	0.00006	0.00010
TOTAL STATISTICS	0.00135	0.00069	0.00159
$ u_e, \overline{ u}_e Flux $	0.00039	0.00025	0.00044
Energy Measurement	0.00018	0.00015	0.00024
Shower Length Model	0.00027	0.00021	0.00020
Counter Efficiency, Noise, Size	0.00023	0.00014	0.00006
Interaction Vertex	0.00030	0.00022	0.00017
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057
Charm Production, $s(x)$	0.00047	0.00089	0.00184
Charm Sea	0.00010	0.00005	0.00004
$\sigma^{\overline{ u}}/\sigma^{\nu}$	0.00022	0.00007	0.00026
Radiative Corrections	0.00011	0.00005	0.00006
Non-Isoscalar Target	0.00005	0.00004	0.00004
Higher Twist	0.00014	0.00012	0.00013
R_L	0.00032	0.00045	0.00101
TOTAL MODEL	0.00064	0.00101	0.00212
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272

LO Quark-Parton model tuned to agree with data:

- Heavy quark production suppression and $\overline{s}(x)$ (CCFR, NuTeV $\nu N \rightarrow \mu^+ \mu^- X$ data)
- R_L , Higher twist (from fits to SLAC, BCDMS)
- d/u constraints from NMC, NUSEA data
- Intrinsic charm from EMC $F_2^{c\overline{c}}$

This "tuning" of model is *crucial* to analysis

 Agreement in this "short" charged-current sample is good within systematic uncertainties

NuTeV Neutrino Flux

Approximately 5% of all short events are ν_e CC. \Rightarrow It would take a 20% mistake in ν_e to move $\sin^2 \theta_W$ to SM value NuTeV Neutrino Flux Prediction 10³ **∵***d¢/dE, (/10[€] POT) \mathcal{V} \mathcal{V}_{μ} 10^{2} 10 1 10 ш 250 300 50 100 150 200 350 400 450 500 E_{ν} (GeV) E,*d¢/dE, (/10° POT) 10² $\overline{\mathcal{V}}$ $\overline{\mathcal{V}}_{\mu}$ 10 $\overline{\mathcal{V}}_{e}$ 1 \mathcal{V}_{μ} 10 250 50 100 300 350 400 150 200 450 500 E_{ν} (GeV)

- Excess of ν_e over ν
 e in ν beam is due to K⁺{e3} decay
 → Vast majority of ν_e/ν
 _e in ν/ν beams
 - $\hookrightarrow K_L$ and charm decay, which make both u_e and $\overline{
 u}_e$, are small
- K_{e3}^{\pm} decay is very well understood
 - $\hookrightarrow K^{\pm}$ production... is constrained by ν_{μ} and $\overline{\nu}_{\mu}$ flux
- Have (less precise) direct measurements of u_e and $\overline{
 u}_e$

NuTeV Neutrino Flux

- Tune the observed u_{μ} spectrum to match MC prediction
 - → Driven by small uncertainties in SSQT alignment and large production uncertainties
 - \hookrightarrow Tuning procedure is robust at 0.5% level

• Find

Beam	E_{π}	E_K	K/π
ν	-0.2%	-1.3%	+2.7%
$\overline{\mathcal{V}}$	-0.4%	-0.9%	+2.8%

- \hookrightarrow Sensitive to calorimeter calibration ($\delta E_{cal} = 0.43\%$)
- K_{e3}^{\pm} branching ratio (1.4%) dominates ν_e flux uncertainty!!!

Direct Measurements of ν_e Flux

We have three additional *measurements* of the ν_e flux:

- 1. ν_{μ} in $\overline{\nu}$ beam (measures charm, K_L decay)
- 2. ν_e electron showers (80 < E_{ν} < 180 GeV)
 - $N_{\rm meas}/N_{\rm pred}$: $1.05 \pm 0.03 \ (\nu_e)$, $1.01 \pm 0.04 \ (\overline{\nu}_e)$
- 3. ν_e from very short events ($E_{\nu} > 180 \text{ GeV}$)
 - Precise measurement of u_e on tail of flux
 - Observe $\sim 35\%$ more $\overline{\nu}_e$ than predicted in $\overline{\nu}$ beam, smaller excess in ν beam
 - Conclude that we should require $E_{\rm had} < 180 ~GeV$
 - Preliminary NuTeV result did not know of this problem
 - \hookrightarrow ADC saturation in electron showers moved events to lower $E_{\rm had}$, where they were not visible
 - $\hookrightarrow \delta R_{\mathrm{exp}}^{\nu} \approx 0.0012$, $\delta R_{\mathrm{exp}}^{\overline{\nu}} \approx 0.0010$ (!)
 - \hookrightarrow After incorporating high E_{ν} ν_{e} measurement, result is same with and without high E_{had} cut

Rexp vs Visible Energy

Hadron Shower Length

- All events have showers from recoil of hadronic system
 - \hookrightarrow Determines event length for NC
 - \hookrightarrow NC \rightarrow CC sample (0.7% of NC)
 - \Rightarrow Want to model punch-through at 10% level
- Testbeam hadrons measure punch-through
- Use LEPTO simulation to study difference between ν -induced and hadron-induced showers

Stability of R_{exp}

- We have evaluated systematic uncertainties and believe they are under control
 - \hookrightarrow Now want to verify this with data...
- Strategy: verify that the $R_{\rm exp}$ comparison to Monte Carlo is consistent under changes in fiducial cuts and different ranges of event variables
 - \hookrightarrow Use χ^2 probability test to evaluate comparisons
 - \hookrightarrow Compare to expected values
 - * Be wary that new physics can cause inconsistency! (e.g., E_{had} dependence of R_{exp})
- Event observables:
 - Longitudinal vertex: check detector uniformity Short/Long separatrix: check CC↔NC Transverse vertex: more NC background near edge Visible Energy: checks EVERYTHING!

Stability of R_{exp} (cont'd)

 ${\cal R}$ as a function of longitudinal vertex

Stability of R_{exp} (cont'd)

R as a function of length cut

- "16,17,18" [counters] is default; tighten↔loosen NC selection
- Measurements are correlated; uncertainties are on *difference*

(Green band is $\pm 1\sigma$ systematic uncertainty)

(Green band is $\pm 1\sigma$ systematic uncertainty)

Stability of R_{exp} (cont'd)

(Green band is $\pm 1\sigma$ systematic uncertainty)

- Largest theoretical uncertainty is in parameterization of charged-current charm production via m_c
- Therefore, fit for m_c and $\sin^2 \theta_W$ simultaneously, with R^{ν}_{exp} , $R^{\overline{\nu}}_{exp}$ and experimental m_c constraint as inputs

•
$$\sin^2 \theta_W^{\text{(on-shell)}} = 0.2277 \pm 0.0013 \pm 0.0009$$

 $\rightarrow m_c = 1.32 \pm 0.09 \pm 0.06 \text{ GeV} \text{ (cf. input } m_c = 1.38 \pm 0.14 \text{)}$

 $\bullet \sin^2 heta_W^{(ext{on-shell})}$ determined by a quantity that is $pprox R^-$

(Paschos-Wolfenstein)

Summary of uncertainties

SOURCE OF UNCERTAINTY	$\delta \sin^2 heta_W$	$\delta R^{\nu}_{ m exp}$	$\delta R^{\overline{ u}}_{ m exp}$
Data Statistics	0.00135	0.00069	0.00159
Monte Carlo Statistics	0.00010	0.00006	0.00010
TOTAL STATISTICS	0.00135	0.00069	0.00159
$ u_e, \overline{\nu}_e Flux $	0.00039	0.00025	0.00044
Energy Measurement	0.00018	0.00015	0.00024
Shower Length Model	0.00027	0.00021	0.00020
Counter Efficiency, Noise, Size	0.00023	0.00014	0.00006
Interaction Vertex	0.00030	0.00022	0.00017
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057
Charm Production, $s(x)$	0.00047	0.00089	0.00184
Charm Sea	0.00010	0.00005	0.00004
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022	0.00007	0.00026
Radiative Corrections	0.00011	0.00005	0.00006
Non-Isoscalar Target	0.00005	0.00004	0.00004
Higher Twist	0.00014	0.00012	0.00013
R_L	0.00032	0.00045	0.00101
TOTAL MODEL	0.00064	0.00101	0.00212
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272

- In standard electroweak theory, NuTeV precision is comparable to a single direct measurement of M_W
- More inconsistent with direct M_W than other data

SM Fit with NuTeV $\sin^2 \theta_W$

Fall 2001

	Measurement	Pull	$(O^{\text{meas}} - O^{\text{fit}})/\sigma^{\text{meas}}$
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	30	
m _z [GeV]	91.1875 ± 0.0021	.01	
Г _Z [GeV]	2.4952 ± 0.0023	41	-
$\sigma_{had}^{0}\left[nb ight]$	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.06	-
A ^{0,I} _{fb}	0.01714 ± 0.00095	.76	-
A _I (P _τ)	0.1465 ± 0.0033	45	-
R _b	0.21646 ± 0.00065	1.08	_
R _c	0.1719 ± 0.0031	12	•
A ^{0,b}	0.0990 ± 0.0017	-2.78	
A ^{0,c} _{fb}	0.0685 ± 0.0034	-1.67	
A _b	0.922 ± 0.020	64	-
A _c	0.670 ± 0.026	.07	
A _l (SLD)	0.1513 ± 0.0021	1.61	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$) 0.2324 ± 0.0012	.83	-
m _W ^(LEP) [GeV	'] 80.450 ± 0.039	1.50	
m _t [GeV]	174.3 ± 5.1	14	•
m _W ^(TEV) [GeV	/] 80.454 ± 0.060	1.04	
sin ² θ _W (NuTe	V) 0.2277 ± 0.0016	2.98	
Q _W (Cs)	-72.50 ± 0.70	.56	-
			-3 -2 -1 0 1 2 3

(Courtesy M. Grunewald, LEPEWWG) Without NuTeV: $\chi^2/dof = 21.5/14$, probability of 9.0%With NuTeV: $\chi^2/dof = 30.5/15$, probability of 1.0%Upper $m_{\rm Higgs}$ limit weakens slightly

• Either $\sin^2 \theta_W^{(\text{on-shell})}$ or ρ_0 could agree with predictions \hookrightarrow but both agreeing is unlikely!

- 3-5% more sensitive to d than u ($\frac{n}{p} > 1$, strange sea)
- Assuming predicted u coupling, $(g_L^{ ext{eff}})^2$ appears low

Isospin Violating PDFs

- Isospin symmetry may not be good for PDFs $(u^p \neq d^n)$.
 - \hookrightarrow PDF fits use this assumption
 - \hookrightarrow Obviously, electromagnetic effects violate isospin. $m_n \neq m_p$.
 - \hookrightarrow Has been calculated in several classes of non-perturbative model
- NuTeV is sensitive since $\epsilon^u \neq \epsilon^d$

- How much can we rely on models?
- Implications for collider data?
 - \hookrightarrow Valence distributions (from neutrino data on heavy targets) are extracted assuming $u^p = d^n$

 \hookrightarrow Hard to exclude ALL models with such an argument

- "Almost sequential" Z' with opposite coupling to ν
 - \hookrightarrow NuTeV preferred mass range: $1.2^{+0.3}_{-0.2}$ TeV
 - \hookrightarrow CDF/D0 limits: $M_{Z_{
 m SM}^{\prime}} \stackrel{>}{\sim} 700~{
 m GeV}$
- Contact interaction with LL coupling $\hookrightarrow \nu \nu q q$ Contact term, $\Lambda_{LL} = 4.5 \pm 1$ TeV

$$-\mathcal{L} = \sum_{H_q \in \{L,R\}} \frac{\pm 4\pi}{\left(\Lambda_{LH_q}^{\pm}\right)^2} \times \left\{\overline{l_L}\gamma^{\mu} l_L \overline{q_{H_q}}\gamma_{\mu} q_{H_q} + l_L \gamma^{\mu} \overline{l_L} \overline{q_{H_q}}\gamma_{\mu} q_{H_q} + \text{C.C.}\right\}$$

(Langacker et al., Rev. Mod. Phys. 64 87.)

Neutral Current ν Interactions

- LEP I measures Z lineshape and decay partial widths to infer the "number of neutrinos"
- $\begin{array}{l} \hookrightarrow \text{ Their result is } N_{\nu} = 3 \frac{\Gamma_{\exp}(Z \to \nu \overline{\nu})}{\Gamma_{\mathrm{SM}}(Z \to \nu \overline{\nu})} = 3 \times (0.9947 \pm 0.0028) \\ \Leftrightarrow \text{ LEP I "direct" partial width } (\nu \nu \gamma) \Rightarrow N_{\nu} = 3 \times (1.00 \pm 0.02) \\ \bullet \stackrel{(-)}{\nu}_{\mu} e^{-} \rightarrow \stackrel{(-)}{\nu}_{\mu} e^{-} \text{ scattering (CHARM II et al.)} \\ \leftrightarrow \text{ PDG fit: } g_{V}^{2} + g_{A}^{2} = 0.259 \pm 0.014, \text{ cf. } 0.258 \text{ predicted} \end{array}$
- NuTeV can fit for a deviation in $\nu\&\overline{\nu}$ NC rate

 $ightarrow
ho_0^2 = 0.9884 \pm 0.0026 (\text{stat}) \pm 0.0032 (\text{syst})$

 In this interpretation, NuTeV confirms and strengthens LEP I indications of "weaker" neutrino neutral current
 → NB: This is not a unique or model-independent interpretation!

Conclusions

- NuTeV measures $R^{
 u}$, $R^{\overline{
 u}}$ to precisely determine $\sin^2 heta_W$
- NuTeV expects 0.2227 ± 0.0003 ; measures

 $\sin^2 \theta_W^{\text{(on-shell)}} = 0.2277 \pm 0.0013 (\text{stat.}) \pm 0.0009 (\text{syst.})$

- Given inconsistency with Standard Model, we present result also in model-independent frameworks
 - \hookrightarrow Data prefers lower effective left-handed coupling
- Neutral-current couplings of neutrinos may be suspect
 - → Only other precise measurement, LEP Invisible Z Width, also suggests a discrepancy
 - \hookrightarrow Consistent with earlier νN measurements
- Pending confirmation, refutation, or alternative explanations, it's a puzzle.