The Quest for New Physics at CLEO

Hanna Mahlke-Krueger

DESY Seminar 02/11/03

CKM matrix

- Connects mass and weak eigenstates
- Each V_{ij} has real and imaginary parts, move imaginary phase into V_{ub} and V_{td}
- Elements are model parameters that have to be measured
- V[†]V=1 gives six triangles for the off-diagonal elements

$$\mathbf{V}_{CKM} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix}$$

This talk is mostly about $|V_{cb}|$ and $|V_{ub}|$ obtained by studying semileptonic decays.

DESY Seminar 02/11/03

• V_{ub} measures one side, sin2 β one angle

• Want to overconstrain to look for new physics

DESY Seminar 02/11/03

B physics at the CLEO detector

- CESR accelerator operates ON the $\Upsilon(4S)$ resonance (10.58GeV), just above B pair production threshold \rightarrow at rest, very clean
- Parts of data taken 60MeV below resonance (OFF) to aid in background subtraction
- Datasets:
 - CleoII(.V): 9.1fb⁻¹ON Υ(4S) (10M BB), 4.4fb⁻¹OFF
 - CleoIII: 6.9fb⁻¹ON Υ(4S) (7M BB),
 2.3fb⁻¹OFF

DESY Seminar 02/11/03

Two CLEO events: $e^+e^- \rightarrow \gamma^* \rightarrow \gamma(4S) \rightarrow B\overline{B}$

02/11/03

• Why use several techniques? Independent systematics, cross check, different theoretical problems!

DESY Seminar 02/11/03

A direct route to V_{cb} and V_{ub} : semileptonic b \rightarrow c,u transitions

Rate for a final state with a particular hadron:

DESY Seminar 02/11/03

A direct route to V_{cb} and V_{ub} : semileptonic b \rightarrow c,u transitions

Theory can predict

- total inclusive rate
 - On average, integrate over enough exclusive bound states and phase space ⇒ inclusive hadronic result will match quark level calculations
 - Framework: Heavy Quark Effective Theory to calculate observables, example see next slide

inclusive

DESY Seminar 02/11/03

$\Gamma_{sl}(B \rightarrow X_c l\nu) \leftrightarrow V_{cb}$ using OPE/HQET

Expansion in powers of α_S and Λ_{QCD}/m_B :

$$\Gamma_{\rm sl}(B \to X_{\rm c} l\nu) = \frac{G_{\rm F}(|V_{\rm cb}|^2 M_{\rm B}^3}{192\pi^4} 0.3689 \left[1 - 1.54 \frac{\alpha_s}{\pi} - 1.43\beta_0 \left(\frac{\alpha_s}{\pi}\right)^2 - (1/M_{\rm B})^2 - 1.648 \frac{\bar{\Lambda}}{M_{\rm F}} \left(1 - 0.87 \frac{\alpha_s}{\pi}\right)^2 - 0.946 \left(\frac{\bar{\Lambda}}{M_{\rm F}}\right)^2 - 3.185 \frac{\lambda_1}{M_{\rm B}^2} + 0.02 \frac{\lambda_2}{M_{\rm B}^2} - 0.298 \left(\frac{\bar{\Lambda}}{M_{\rm B}}\right)^3 - 3.28 \frac{\lambda_1 \bar{\lambda}}{M_{\rm B}^3} + 10.47 \frac{\lambda_2 \bar{\Lambda}}{M_{\rm B}^3} - 6.153 \frac{\rho_1}{M_{\rm B}^3} + 7.482 \frac{\rho_2}{M_{\rm B}^3} - 7.482 \frac{\tau_4}{M_{\rm B}^3} + 7.482 \frac{\rho_2}{M_{\rm B}^3} - 7.482 \frac{\tau_4}{M_{\rm B}^3} + \mathcal{O}\left(\frac{1}{M_{\rm B}^4}\right) \right]$$

 $O(M_B^{-1})$: $\overline{\Lambda}$, energy of light quark and gluon dof inside B ($m_B^{-}m_b$) $O(M_B^{-2})$: λ_1 , average kinetic energy of b, and λ_2 (hyperfine splitting, from $\Delta m(B,B^*)$ $O(M_B^{-3})$: $\rho_{1,2}$, $\tau_{1..4}$ (estimated)

DESY Seminar 02/11/03

$(\lambda_1, \overline{\Lambda})$ plane and V_{cb}

So how do we get to λ_1 , $\overline{\Lambda}$? 3 approaches.

DESY Seminar 02/11/03

A helper process with its own virtue: $b \rightarrow S\gamma$ DETOUR, inclusive $b \rightarrow c$ afterwards

- FCNC process, vanishes at tree level
- Heavy to light transition

• Can easily be confuse<u>d</u> e.g. with $e^+e^- \rightarrow e^+e^- \gamma \rightarrow qq\gamma$

• Use event shape cuts and neural net

Goals: rate, E_{γ} spectrum

E_{γ} spectrum in b \rightarrow s γ : From partons to hadrons

- Doppler broadening due to Fermi motion of the b within the B
- Leaves total rate unaffected
- ➢ Options include the Spectator Model (need m_b and p_F) and Shape Functions (convolute with parton level calculation, eg. b→sgγ – ANY heavy to light transition!!)
- Cannot be calculated from first principles, need experimental input

DESY Seminar 02/11/03

Using the $b \rightarrow s\gamma$ photon energy spectrum

- monoenergetic photon mean controlled by m_b, smeared by
 - gluon bremsstrahlung $\rightarrow pQCD$
 - Doppler broadening due to Fermi motio (p_F)
 - Boost and detector resolution \rightarrow experimental problem
- Moments of E_{γ} related to HQET parameters:
 - Mean $\rightarrow \overline{\Lambda}$ (m_b or energy of light q's and g's),
 - RMS $\rightarrow \lambda_1(\overline{\Lambda})$ (kinetic energy of b)

b→sγ: Photon Energy Spectrum Results

DESY Seminar 02/11/03

Hadronic Mass Moments in B→X_clv Decays

A second way of getting $\overline{\Lambda}$, λ_1

- Select b \rightarrow clv events, p_l>1.5GeV, subtract continuum & ulv backgrounds
- Fit $\widetilde{\mathbf{M}}_{\mathbf{X}}^2 = \mathbf{M}_{\mathbf{B}}^2 + \mathbf{M}_{\mathbf{Iv}}^2 2\mathbf{E}_{\mathbf{B}}\mathbf{E}_{\mathbf{Iv}}$ distribution with
 - $B \rightarrow D l \nu, D^* l \nu$
 - Higher resonances
 - Non-resonant production

hep-ex/0108033

DESY Seminar 02/11/03

$B \rightarrow X_C lv$: Hadronic mass moments

- Theory provides Spin-averaged $\frac{\langle \mathbf{M}_{X}^{2} - \overline{\mathbf{M}_{D}^{2}} \rangle}{\mathbf{M}_{B}^{2}} = \mathbf{f}(\lambda_{1}, \overline{\Lambda}; \rho_{1,2}, \tau_{1..4})$ $\frac{\langle (\mathbf{M}_{X}^{2} - \langle \mathbf{M}_{X}^{2} \rangle)^{2} \rangle}{\mathbf{M}^{4}} = \mathbf{g}(\lambda_{1}, \overline{\Lambda}; \rho_{1,2}, \tau_{1..4})$
- ★ Convergence concerns for second moment for both b → $s\gamma$ (E_γ) and B→X_CIν (hadronic mass moments)

Combining $b \rightarrow s\gamma$ and $B \rightarrow X_c Iv$ gives:

$$O(M_{B}^{-3}, \beta_{0}\alpha_{S}^{2}), \overline{MS}:$$

$$\overline{\Lambda} = 0.35 \pm 0.07 \pm 0.10 \text{GeV}$$

$$\lambda_{1} = -0.236 \pm 0.071 \pm 0.078 \text{GeV}^{2}$$

DESY Seminar 02/11/03

$\overline{B} \rightarrow X_c l \overline{v}$ lepton moments

A third way of getting $\overline{\Lambda}, \lambda_1$

- Measure lepton spectrum, p>1.5GeV, l=e,µ
- Subtract background (cont, fake leptons, real background leptons), correct E₁ spectrum
- Moments: $R_0[R_1] = \frac{\int_{1.7[1.5]} [E_l] (d\Gamma_{sl} / dE_l) dE_l}{\int_{1.5} (d\Gamma_{sl} / dE_l) dE_l}$ $= (\text{theory :}) f(\overline{\Lambda}, \lambda_1)$

DESY Seminar 02/11/03

nep-ex/0210040

From the HQET parameters to V_{cb}

• 3 results on HQE parameters $(\overline{\Lambda}, \lambda_1)$:

Bands of Const V_{cb} Bands of Const V_{c

 $\left(\overline{\Lambda} - (\mathbf{m}_{B} - \mathbf{m}_{b}), \lambda_{1} - \text{average kinetic energy of b in B}\right)$

 $\bigstar \mathbf{b} \rightarrow \mathbf{s} \gamma: \langle \mathbf{E}_{\gamma} \rangle + \text{theory} \Rightarrow \overline{\Lambda}$

 $\bigstar \mathbf{B} \longrightarrow \mathbf{X}_{\mathbf{c}} \mathbf{l} \mathbf{v} : < \mathbf{M}_{\mathbf{X}}^2 - \mathbf{M}_{\mathbf{D}}^2 > + \text{theory} \Rightarrow \lambda_1(\Lambda)$

- $\bigstar \mathbf{B} \rightarrow \mathbf{X}_{\mathbf{c}} \mathbf{l} \mathbf{v}: \text{ lepton moments } \mathbf{R}_0 \text{ and } \mathbf{R}_1 + \text{ theory} \Rightarrow 2 \mathrm{x} \lambda_1(\overline{\Lambda})$
 - At $O(M_B^{-3})$: Λ , λ_1 , λ_2^{-} , $\rho_{1,2}$, $\mathcal{I}_{1..4}$ (only estimates, must rely on rapid convergence)
 - Could, in principle, determine all parameters conducting multiple experiments
- ➤ Consistent results?
- Is parton hadron duality a good assumption, and how to quantify resulting uncertainties?

DESY Seminar 02/11/03

$|V_{cb}|$ inclusive comparison

- Important test of HQE
- 3% precision on V_{cb}, good agreement
- Theoretical error needs to improve
- Note the impact of Γ_{sl}

Hadronic mass in $B \rightarrow X_c lv + b \rightarrow s\gamma$:

$$\begin{split} |V_{cb}| = & (40.4 \pm 0.9(\Gamma_{sl}^{\text{CLEO}}) \pm 0.5(\lambda_{1},\Lambda) \pm 0.8(\text{th})) \times 10^{-3} \\ E_{l}: |V_{cb}| = & (40.8 \pm 0.5(\Gamma_{sl}^{\text{WW}}) \pm 0.4(\lambda_{1},\Lambda) \pm 0.9(\text{th})) \times 10^{-3} \end{split}$$

DESY Seminar 02/11/03

Introduction

V_{cb} exclusive: $B \rightarrow D^{(*)} lv$

- From semileptonic decay rate to V_{cb} : $d\Gamma^{B\to D(*)lv}/dW = G_F^2/48\pi^3 K(W) |V_{cb}|^2 \mathcal{F}_{D(*)}^2(W)$
 - w=v_B·v_D, Lorentz boost of D* in B rest frame; also w= $(m_B^2+m_{D*}^2-q^2)/(2m_Bm_{D*})$
 - K(w): known kinematical factor
 - Theory constrains shape of \mathcal{F} and normalization $\mathcal{F}(1)$ (≈ 1 in HQET) $w=1 \rightarrow D$ is at rest w.r.t. B. $\mathcal{F}(w) = \begin{cases} \text{fct of various form factors,} \\ \text{related, parametrized (slope <math>\rho)} \end{cases} = f(\mathcal{F}(1), \rho^2; w)$

 \succ Can measure shape and $\mathcal{F}(1)^2 |V_{cb}|^2$.

DESY Seminar 02/11/03

V_{cb} exclusive: B⁰→**D***⁺l⁻ν, B⁻→**D***⁰l⁻ν signal yield

- Reconstruct $D^* \rightarrow \pi_s D^0 \rightarrow \pi_s (K^- \pi^+)$, add e or μ
- Use cosθ_{B,D*1}, assume there is exactly one ν, to compute w and to suppress background:
 - ≻ −1..1 for signal events
 - combinatorically rec'd D*'s constitute largest background
- **Fit** for composition and obtain true D*lv yield for each w bin

DESY Seminar (1.10<w<1.15) Hanna Mahlke-Krueger 02/11/03

DESY Seminar 02/11/03

V_{cb} worldwide

Inclusive determination and inclusive/exclusive averages:

CLEO Hadr mass CLEO ℓ energy Belle Γ_{sl} LEP + $\Upsilon(4S)$ incl B \rightarrow D^(*)lv world average

 $\delta V_{cb} / V_{cb} = 3...5\%$

DESY Seminar 02/11/03

Introduction

• Why use several techniques? Independent systematics, cross check, different theoretical problems!

DESY Seminar 02/11/03

From V_{cb} to V_{ub}

- $(V_{ub}/V_{cb})^2 = 0.01$
- Exclusive
 - Formation of hadrons is similar; form factor is one of the big uncertainties

• Inclusive –

- Differs theoretically as u is not heavy (heavy quark symmetries not valid)
- Regions in phase space where ulv is enhanced w.r.t. clv usually are regions with either theoretical challenges (lepton endpoint) or experimentally not clean (high q², low M_X)

DESY Seminar 02/11/03

1st ulv preferred region $\rightarrow |V_{ub}|$: the 'endpoint' lepton spectrum

$$|V_{\rm ub}| = (3.07 \pm 0.12) \times 10^{-3}$$

- Measure lepton energy spectrum for $E_1 = p_1^{\min} \dots 2.6 \text{GeV/c}$
- Trade experimental against theoretical uncertainties by varying the lower limit (extrapⁿ ←elv bkgd) hep-ex/0202019

 $\frac{\operatorname{Br}(B \to X_u \ell \nu)}{1.6 \mathrm{ps}}$

DESY Seminar 02/11/03

Hanna Mahlke-Krueger

dT/dE

 $|V_{ub}|$ inclusive measurement I: the lepton 'endpoint' spectrum $(|V_{ub}|=...(B(b → ulv)/τ_B)^{1/2})$

- Measure lepton spectrum for E₁=2.x...2.6GeV/c, extrapolate to full range
- Previously had to resort to models for extrapolation

- Remember b→sγ, another heavy to light transition: **shape function**!
- ➤ calculate parton level, use
 b→sγ shape function (check with models)

V_{ub} incl from lepton endpoint analysis

Background suppression: Cont: neural net for event shape information

 $B \rightarrow cl\nu$: account for in fit using MC

Check analysis with different p_1^{min} cuts

$$|V_{ub}|=4.08\pm0.63 (2.2...2.6 GeV/c)$$

(dominant error from extrapolating to the full p₁ range)

DESY Seminar 02/11/03

 $B \rightarrow X_u lv (MC)$

ISGW2 non-res

hep-ex/0207064 (ICHEP 02 prelim)

♦ Use clv to determine moments $\rightarrow |V_{cb}|$ (in progress)

2nd ulv preferred region: high q^2 & low M_x^2

* Keep all semileptonic B events, again determine BR($b \rightarrow u, clv$)

♦ V_{ub}:

- \succ ulv in **R**=(high q², low M_x²)!
- \succ *R* theoretically preferred
- \blacktriangleright scale down by fraction of events in **R**, do this with several models to evaluate systematic error, use HQET in **R**

(ICHEP 02

vrelim) Seminar 02/11/03

hep-ex/0207064 $|V_{ub}| = (4.05 \pm 0.18 \pm 0.58 \pm 0.25 \pm 0.21 \pm 0.56) \times 10^{-3}$ syst $X_{c} l\nu X_{u} l\nu$ theo $\rightarrow 22\%$ stat

$$\begin{array}{l} B \rightarrow X_{u} lv (MC) \quad ISGW2 \dots non-res \\ B \rightarrow X_{c} lv (MC) \quad B \rightarrow D, D^{**} lv, B \rightarrow D^{*} lv, \\ \quad B \rightarrow X_{c} non-resonant \\ \end{array}$$
background cont, fake and sec leptons

Introduction

 V_{ub} exclusive: $B \rightarrow m l v$

Form factor

 $\frac{d\Gamma(B \rightarrow m l \nu)}{dq^2} \propto |V_{ub}|^2}{K(p_m)F_m(q^2)^2}$

- K(p_m)... kinematic factor
- F_m(q²)...form factor function, depends on m
- Reconstruct $q^2 = (p_l + p_v)^2$

B
$$\rightarrow$$
 mlv yields
 $\nu: \overrightarrow{p_{\nu}} = \overrightarrow{P_{miss}}; E_{\nu} = |\overrightarrow{P_{miss}}|$
 $p_{l} > 1.0[1.5] \text{GeV for } \pi l\nu [\rho l\nu]$

- Fit M_B and ΔE to get yield, all modes together, apply isospin constraints
 - * $\pi l\nu$ sees much feeddown from $\rho l\nu$, $\rho l\nu$ does not have much from $\pi l\nu$
- Binning in q² reduces systematic uncertainty greatly
 - * (variation of $\varepsilon(q^2)$, cross feed(q²) over bin reduced)

DESY Seminar 02/11/03

 $d\Gamma/dq^2(q^2), q^2=0..30 \text{GeV}^2$:

- One method: Fit with different form factor models
 - Fit quality \succ discrimination among form factors!
 - Normalization $\geq |V_{ub}|$ spread between models in $B \rightarrow \pi l \nu$ less than uncertainties of each model
- Or, use LCSR or LQCD calculations for form factors where applicable...

02/11/03

Hanna Mahlke-Krueger

Branching fractions per q² interval:

CLEO result: Averaged values extracted using LQCD and LCSR

DESY Seminar 02/11/03

Hanna Mahlke-Krueger

Ê.

|V_{ub}| comparison

CLEO πlv 2003 CLEO ρlv 2003 BaBar ρlv 2002 CLEO ρlv 1999

CLEO endpoint 2001 CLEO Xlv prelim 2002 LEP

 $|V_{ub}|/10^{-3}$

Values are in good agreement. Status: $\delta V_{ub} / V_{ub} = 14...20\%$

DESY Seminar 02/11/03

Another heavy-to-light transition: From $D \rightarrow \pi l v$ to $B \rightarrow \pi l v$

 $\Gamma_{sl} = f(|V_{HI}|^2, \text{ form factor } f_+^{D,B\to\pi}, \text{ kinematics}):$

- $f_+^{D\to\pi} \leftrightarrow f_+^{B\to\pi}$ from HQET
- $|V_{cd}|$ known to 7%, extract $\mathbf{f}_{+}^{\mathbf{D}\to\pi}$ in D decays
- Principal background comes from $D \rightarrow Klv$. CleoIII RICH particle ID should reduce this background substantially.
- Analysis underway

DESY Seminar 02/11/03

- **B factories** will provide vast data samples
- More information at **new level of precision** on CKM matrix elements, CP violation etc to be expected soon
- Precision of CKM ME's limited by theoretical understanding of strong interaction
- Theoretical tools are being developed, but they need to be calibrated

Strong interaction and non-perturbative QCD

- QED → QCD: strong coupling and nonlinearity due to gluon self-coupling ⊠a new feature: confinement
- **Perturbative QCD** saved the day for high energies and has been extremely successful
- Confinement is a **low energy phenomenon** but an essential component of our physics picture → need to master this area too!!
- Theoretical tools available but must be verified, e.g. **lattice QCD**

DESY Seminar 02/11/03

Lattice version of QCD

The only complete definition of QCD: comprises pert. and non-perturbative aspects Also B factories welcome LQCD input, e.g. f_B Recent advances to allow unquenched calculations improved the precision of predictions from 15% down to the percent level, but... Need data to calibrate!

Recent results (fall '02)

- Normal Tune $m_u = m_d, m_s, m_c, m_b$ and α_s using $m_{\pi}, m_K, m_{\gamma}, m_{\psi}, \Delta E_{\gamma}$ (1P-1S), n_f=3, a=1/8 fm
- Much more precise results (errors reduced 3-4x)

remarkable agreement with experimental data

G.P. Lepage for HPQCD+MILC Collaborations (Preliminary Results)

Recent LQCD results

 \Rightarrow New results: (lattice QCD)/(experiment) — no free parameters!

Now $(n_f = 3)$

Before 2000 $(n_f = 0)$

HPQCD: Davies, Gray et al. (2002)

DESY Seminar 02/11/03

CLEO-c / CESR-c

Ref: "CLEO-c and CESR-c: A New Frontier of Weak and Strong Interactions" (CLNS 01/1742)

- **3 years of charm and QCD physics** (2003-2006)
 - ① CESR: add wigglers to enhance transverse cooling
 ① CLEO: silicon vertex detector → inner drift chamber
 - ① Solenoid: $1.5 \rightarrow 1$ Tesla (compensation, reconstruction)
- Υ(1,2,3S), 1-2fb⁻¹ each, finished in June 2002 precision spectroscopy CLEO, ICHEP02: Υ₂(1D)
- $\psi(3700)$, 3fb⁻¹; $\psi(4100)$, 3fb⁻¹; $\psi(3100)$, 1fb⁻¹ orders of magnitude more than was available before (MarkIII, BESII)

Large samples of extremely clean events in an interesting energy region

DESY Seminar 02/11/03

A Cleo-c (MC) event

- Clean events, low multiplicity
- Spherical event topology
- Good signal/bkd ratio

 $D^0 \rightarrow K^- \pi^+$

 $\overline{D}^0 \rightarrow K^+ e^- v$

DESY Seminar 02/11/03

Cleo-c - a unique opportunity

- Calibration of LQCD tools such that they can be trusted when applied to b physics
- ~1% measurements of $|V_{cs}|$ and $|V_{cd}|$
- Direct Beyond the Standard Model searches unique to Cleo-c
- Sensitive searches of glueballs and exotic states

50

Friday 2/7/03 14.33h:

--> Dear CLEO Colleagues,

We just received the following short announcement from Maury Tigner:

To CLEO, CESR and CHESS Colleagues

We learned this morning that the National Science Board, the governing board of the NSF, has approved the 5 year proposals of both LEPP and CHESS.

There will be a celebration in the Wilson Commons on Feb. 28

Needless to say, we are delighted that we can now move forward confidently with CLEO-c knowing that the project is approved! David and Ian

DESY Seminar 02/11/03

Summary

- CLEO continues to contribute to a precise understanding of the SM:
 - ♦ |V_{cb}|
 ♦ |V_{ub}|
- Confinement remains one of the challenges
- New tools are becoming available, but we need testing grounds:

Recent advances in Lattice QCD

 \succ Cleo-c is on its way

 More than ever, it is essential to combine knowledge from all areas to obtain the best possible results.