Proven Outcomes Oncology Solutions

Particle Therapy

Fighting Cancer with Ion-Beams

© Siemens AG 2007. All rights reserved.

Outline

Siemens

- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Group Sales in a Siemens-Comparison Fiscal Year 2004/05

	Sales in millions of Euros	Profit in millions of Euros
Communications	13.141	454
Siemens Business Services	5.373	-696
Automation and Drives	9.844	1216
Industrial Solutions and Services	5.390	139
Logistics and Assembly Systems	1.472	69
Siemens Building Technologies	4.415	181
Power Generation	8.061	951
Power Transmission and Distribution	4.250	212
Transportation Systems	4.190	45
Siemens VDO Automotive	9.610	630
Medical Solutions	7.626	976
Osram	4.300	465
Siemens Financial Services	10.148*1	319 *2
Siemens Real Estate	1.621	144 *2

*1 Total assets *2 Income before income taxes

Siemens Medical Solutions

Sales According to Regions in Fiscal Year 2004/05

SIEMENS

Siemens Med and Particle Therapy – Long-term Commitment in Oncology

SIEMENS

One leading vendor within oncology care

- Solution provider
- IMRT since 1997
- IGRT
- Oncology information systems
- Simulation systems

Installed base larger than 2000 linear accelerators

 Every day, 29,000 cancer patients are treated in the United States by Siemens linear accelerators

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Cancer Metastatic Tumors: 42% Localized Tumors: 58% **Chemotherapy: 5%** Surgery: 22% Conventional **Palliative Radiotherapy: 12% Treatments: 37%** Surgery & Radiotherapy: 6% Failure of Local Control: 18%

- 2/3 of all patients: localized tumors
- 18% failure of local control => EU: 280.000 casualties/year
- Protons/lons: heal 30.000 patients/year in the EU

Indications for Therapy with lons

Characteristics: Deep seated, radio-resistant, hypoxic tumors Close to "Organs at Risk"

Localisations:

- Brain
- Skull Base
- Liver
- Lung
- Prostata

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Depth-Dose-Profiles

Concerned about dose escalation integral dose?

Medical Use of Ions

Invented by Wilson in 1946

How to shield proton-beams?

Results of more than

- 43,000 patients treated with protons and
- 3,000 patients treated with carbon ions

Current State: "Boom"

- Diagnostics improved (CT and MRT)
- Beam Application techniques improved

Particle Therapy, worldwide

Clinical Advantage of Particles – Improved Dose Distribution

Radiotherapy Source: Anthony J. Lomax et al. Radiotherapy and Oncology 51 (1999) 257–271

Comparison of Carbon Ions vs. Protons

SIEMENS

Carbon

Protons

(GSI)

Capetown/ SA

Double Strand Breaks

- Carbon ions produce non-reparable DNA damage due to double strand breaks (DSB) and clustered damages
- Protons produce mainly single strand breaks

Why Carbon lons?

RBE = Relative Biological = Dose (X-ray)EfficiencyDose (Particle)

Particles need lower dose to gain the same biological effect (RBE > 1)

- RBE approx. 1.1 for protons
- RBE approx. 2–5 for carbon ions

Courtesy of G. Kraft / Prog. Part. Nucl. Phys. 45 (2000) S. 473 - S. 544

Benefit of the High RBE of Carbon lons

- Survival curve shows a high survival rate within the tissue outside the target volume (SOBP)
- RBE of protons = 1.1 for the complete field
- RBE for carbons is strongly increasing in the target volume (where the carbon ions stop)

RBE = Relative Biological Efficiency = $\frac{\text{Dose}(X-ray)}{\text{Dose}(\text{Particle})}$

Where does RBE come from?

- Microscopic dose is very high along the tracks for ions, especially at the end of the range (target volume)
- A few clustered damages (at the highdose track of ions) are more efficient for cell killing than many small damages (from photons or protons) due to cell repair

Jakob, B., Scholz, M., Taucher-Scholz, G., Radiation Research 154 (2000), 398–405

Beam Broadening

 Carbon beams are less affected by multiple scattering

Courtesy of GSI (Gesellschaft für Schwerionenforschung)

Production of Light Nuclei by Nuclear Fragmentation

SIEMENS

Advantages of protons and heavy ions:

- Finite ion range
- Inverted dose profile
- High biological effectiveness

To consider in dose calculations:

- Production of fragments in nuclear collisions (charged fragments, neutrons)
- Dose contribution of fragments along the whole penetration path
- Longer ranges of light fragments

$$R \propto \frac{A}{Z^2}$$

⇒ dose tail behind the Bragg-peak

Model of Nuclear Fragmentation

Nuclear collision can be described as a 2-step process:

- 1. Abrasion: Collision of projectile and target nucleus, abrasion of overlapping nuclei (fireball)
- 2. Ablation: Evaporation of light nuclei and clusters due to high excitation (protons, neutrons, alphas, photons)

Protons:Target fragmentation and scattering of primary protonsCarbon ions:Projectile and target fragmentation

Measurements: Consistent picture, effect can be modeled

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Treatment Plan Definition

- Treatment plan templates
- Comprehensive suite of beam definition tools, e.g.
 - BEV, REV, OEV
 - Manual and graphical beam definition
- Automatic beam splitting
- Beam patching
- Position verification image planning

Treatment Plan Evaluation

Local Effect Model (LEM)

Classical Particle Therapy

- Many widgets in Beam
- Complex setup
- Dose-distribution not optimal
- Patient-individual masks (Boli)

The GSI / Siemens System

- Active scanning with thin beams
- Depth-scans by energy => 3D rastering

Challenged for highest conformity and cost efficiency?

The GSI / Siemens System

GSI – Treatment Room

Corurtesy: HIT

-

GSI – Immobilization

GSI – Operating Console

Corurtesy: HIT

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Our Cooperation Partners

GSI* (Darmstadt, Germany)

MASSACHUSETTS GENERAL HOSPITAL

CANCER CENTER

- synchrotron and raster scanning technology
- treatment optimization (biological effects)

dkfz.

- treatment planning software (ions)
- knowledge transfer
- Licences

PAUL SCHERRER INSTITUT

MGH

* Gesellschaft für Schwerionenforschung

Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use. Page 33

about us

PT System Architecture/Principle

SIEMENS

PT System Architecture/Principle

SIEMENS

Rhön Klinikum AG –

Project Start - September 2006

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Siemens and Danfysik Cooperation

Danfysik

- Since 1964 engaged in the industrial and scientific area
- Danfysik: Turn-Key supplier (exclusive) for the Siemens PT World renowed reputation in accelerator technology
 - Australian synchrotron project
 - Canadian Light Source
 - ANKA

accelerator

Accelerator System Injector: Overview

Accelerator System RFQ

Function:

- Forms packets (necessary for loss free acceleration)
- Accelerates from 8 keV/u > 400 keV/u
- Patented with integrated rebuncher

© A. Bechthold IAP Frankfurt

Accelerator System IH Drift Tube Linac

- 56 accelerating gaps within 3.8 m
- Accelerates from 400 keV/u to 7 MeV/u

Courtesy of GSI

Accelerator System Synchrotron

SIEMENS

Acceleration range up to

- 430 MeV/u (Carbon)
- 250 MeV (Protons)
- (up to 300 mm depth in water)

Ramping Speed:

- 0.5 s till max. energy (Protons)
- 1.0 s till max. energy (Carbon)

Extraction time: 1...10 s Intensity:

- 2 x 10¹⁰ protons/cycle
- 1 x 10⁹ carbon ions/cycle

Diameter: 22 m

Accelerator and Beamlines

Reliability

- Standardized system modules
- Redundant beam profile measurement
- Redundant and diverse intensity measurement
- Proven technology: accelerator/synchrotron
- Fast spill abort (< 250 µs)

Detector block, GSI

Radio-Frequency-Quadrupole

IH Drift Tube Linac

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Service Solution PT Meeting Customer Requirements

- On-site Expert Team around the clock
- Service Desk
- Constant (real time) System Monitoring
- Preventive Maintenance
- Critical Parts on-site
- Remote Support
- Service Coverage from Day 1 of Operation

SIEMENS

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

IT and Workflow

Integration of:

- Administrative IT-System
- OIS
- TPS
- Imaging Modalities
- DICOM-Archive
- Verification Systems
- Treatment Console

IT and Workflow

Simulation of Utilization of a Center with 3 Treatment Rooms

Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use. Page 49

SIEMENS

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Patient Positioning

- Flexible patient positioning systems for fixed beam- and gantry rooms
- Solutions in conjunction with treatment planning and position verification
- Options to improve clinical workflow
- Options to expand range of applications
- Laser positioning marker

Imaging

- Tailor made solutions for position verification in the treatment room
- Approved combinations for treatment planning
- Utilization of synergies of Siemens' diagnostic product portfolio for particle therapy applications
- Research on innovative topics with scientific and clinical partners

Robotic Treatment Table

- Excellent position capabilities with 6 degrees of freedom linear (vertical, lateral, longitudinal) rotation (isocentric, roll, pitch)
- High accuracy

Absolute within a sphere of R = 0.5 mm Relative ±0.1 mm

- Flexibility table top chair QA phantoms
- Automated procedures treatment position loading position QA procedures

Reliability (industrial applications)

Robotic Treatment Table

- First system
- Start HIT in:
- Component
- System rele
- Same robot fixed bear gantry roo CT room
- Different ap specific rooi

Dyna CT – Stent of the Carotis artery

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Gantries: Turn the beam around the patient!

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

Safety Concept

Beam Application and Monitoring System

Active Feedback

Timing of a Voxel

Position Sensitive Detectors

MWPC

- Medical Detector (MDD-conform)
- Series Product
- Built by Siemens Medical
- Full Integration of all aux. Systems!
- 112 channels / view
- > 200mm x 200mm apperture
- ≤ 0,2mm Resolution

Outline

- Siemens
- Cancer
- Radiation Therapy and Biophysics
- Application of lons
- The Siemens Med PT System
- Systems
 - Accelerator
 - Service
 - IT
 - Positioning and Imaging
 - Gantry
 - BAMS
- Heidelberg

First Medical Detectors in Heidelberg

Heidelberg: Lenses, Scanner, Beamtube

Heidelberg: Robot

Heidelberg: Robot

Thank you for your attention

Experimental Arrangement

Measurements with water-equivalent targets

- Thick water target (12.78 cm)
 → stopping of primary ions
 (200 MeV/u, range: 8.57 cm)
- Time-of-flight measurements
 determination of neutron energy
- Measurements from 0° to 30°
 Angular distribution of fragments
- BaF₂-detector-telescope
 identification of isotope species
- Measurements in patient treatments
 - neutron and charged fragment yield behind the patient
 - → angular distributions of fragments from 0° to 90°

Courtesy to GSI (Gesellschaft für Schwerionenforschung)

Page 70

200 AMeV 12C

Energy and Angular Distribution

Angular distribution

- Heavy fragments are forward focused
 produced by projectile abrasion
- Lighter fragments are less focused
 produced by evaporation

Energy distribution

- All fragments are forward focused
- Large maximum at small angles
 - ➔ projectile abrasion
- Exponential decay at high energies and maximum energies of fragments

→ evaporation from fire-ball/ projectile

Results from measurements in **patient treatment** are **comparable** to results obtained at the **water target** if the different irradiation

Courtesy to GSI (Gesellschaft für Schwerionenforschung)

Anole 🕴 (degree)

conditions are considered

DNA Damage Versus Penetration Depth

The amount of double strand breaks immediately after exposure to 200 MeV/carbon ion and after additional incubation time of 3 h for DNA repair shown as a function of penetration depth. Comparison of rejoining after X-ray and particle exposure as function of penetration (G. Kraft)

Courtesy of GSI (Gesellschaft für Schwerionenforschung)
Advantages of Carbon lons: Edge Effect – Overrange Induced by Scattering

Courtesy of GSI (Gesellschaft für Schwerionenforschung)

SIEMENS

Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use. Page 73

SIEMENS

Ripple-Filter

Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use. Page 74

Future: In – Beam PET

Functional benefits:

- In vivo range verification helps to avoid incorrect treatments
- Potential as an enabler for extreme hypofractionation with pilot shot
- Improves the pysicians' confidence in the accuracy of their plans

Status:

- Using existing Siemens PET components (detectors, electronics, mechanics, SW and IT)
- Works in progress, research topic
- Research collaboration with FZR
- Feasibility study with FZR toevaluate PET performance parameters

Measured positron distribution

W. Enghardt et al., FZR Dresden

Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use. Page 75

SIEMENS

SIEMENS

Correlation indication/treatment angle

	Sc. DEGRO	0°	45°	90°	90°+0°	90°+45°	0°+45°	0°+45°+90°	Gantry
Prostate	27%			Χ	X	X		X	X
Head & neck	19%			X	x	X		X	X
Brain	9%			Χ	X	X		X	X
Pediatric	9%	X	X	X	X	X		X	X
Abdomen	8%				X	X	X	X	X
Thorax	7%				X		X	X	X
Mamma	7%		X			X		X	X
Recurrent	4%	X	X	X	X	X	X	X	Х
Uterus				X	X	X	X	X	X
Paraspinal	2%	X						X	X
Extremities	1%	X	X	X	X		X	X	X
Others	5%	X	X	X	X	X	X	X	X

Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use. Page 76