Recent Results from BABAR

Vera Lüth

October 23, 2001

Outline

- CP Violation, CKM Matrix and the Unitarity Triangle
- CP Violation in due to CP Mixture of mass eigenstates, ε_{b}
- Observation of CP Violation in the interference of decay and mixing of flavor eigenstates $\Rightarrow sin 2\beta$
 - The PEP-II B Factory & The BABAR Detector
 - The three linked steps towards the sin2 β measurement
 - B Lifetime
 - B Mixing
 - CP Asymmetry
- Test of CP Violation in $B^0 \rightarrow \pi^+ \pi^-/K^+ \pi^-$
- Summary and Outlook

- CP Violation was discovered in 1964 in K_L decay $\eta_{+-} = \frac{K_L^0 \rightarrow \pi^+ \pi^-}{K_L^0 \rightarrow all} = 2 \times 10^3$
- Three decades of intense study of this and other manifestations in K mesons have not produced a conclusive understanding of this phenomenon
- In neutral K meson decays there are two problems
 - Experimental: effects are small
 - Theoretical: it is difficult to relate the measurements to quark level processes, where theory has predictive power
- In neutral B meson decay the situation is different
 - Experimental: effects are large, but BR small
 - Theoretical: measurements are interpretable at quark level

- *CP Violation one of the necessary ingredients to explain the imbalance of matter and anti-matter in our universe*
- The Standard Model of Weak Interactions makes definite predictions for the size of CP violating effects, it predicts sizable effect in neutral B meson decay
- However, the size of these predicted effects are orders of magnitudes too small to explain the Baryogenesis.
- Thus, we need to look beyond the SM to find explanations for the matter dominance probably not weak interactions!
- BABAR is designed to perform a comprehensive study of B decays and in particular measure CP violating effects in neutral B meson decays.

Direct *CP* Violation, both in neutral and charged B decays

- Total amplitude for a decay mode and its CP conjugate have different magnitudes
- -asymmetries expected to be relatively small
- -Large hadronic uncertainties strong phases !
- CP Violation in Mixing, in neutral B decays
 - charge asymmetry in semi-leptonic decays
 - effects expected to be small in Standard Model ($\Delta\Gamma \ll \Delta M$)

CP Violation in the interference of mixed and unmixed decays

- Study decays to CP eigenstate (f_{CP})
- Large time dependent asymmetries expected in Standard Model

– Asymmetries can be directly related to CKM parameters, in many cases, without hadronic uncertainties

CP Violation in B Mixing

 Relation between mass eigenstates and CP eigenstates :

$$|B_{L,H}^{0}\rangle = \rho|B^{0}\rangle \pm q|\overline{B}^{0}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{B_{d}}|^{2}}} (|B_{1,2}^{0}\rangle + \varepsilon_{B_{d}}|B_{2,1}^{0}\rangle)$$

$$\left|\frac{q}{\rho}\right| = \left|\frac{1 - \varepsilon_{B_d}}{1 + \varepsilon_{B_d}}\right| \neq 1 \implies \operatorname{Prob}(B^0 \to \overline{B^0}) \neq \operatorname{Prob}(\overline{B^0} \to B^0)$$

• CP observable :

$$\mathcal{A}_{CP}(\Delta t) = \frac{\mathcal{N}(\ell^+\ell^+)(\Delta t) - \mathcal{N}(\ell^-\ell^-)(\Delta t)}{\mathcal{N}(\ell^+\ell^+)(\Delta t) + \mathcal{N}(\ell^-\ell^-)(\Delta t)} \approx \frac{4\operatorname{Re}(\varepsilon_{B_d})}{1 + |\varepsilon_{B_d}|^2}$$

- Time independent
- Use dilepton events to measure $A_{CP}(\Delta t)$

CP Violation in B Mixing - Results

- Data sample :
 - 20.7 fb⁻¹ on, 2.6 fb⁻¹ off-peak
- Systematic corrections
 - Charge asymmetry in lepton detection : $\sigma(A_t) = 0.8\%$
 - Charge asymmetry in non-BB background : σ(A_t) = 0.7%
 - BB background charge asymmetry : σ(A_t) = 0.9%
- Preliminary result :

$$\frac{\text{Re}(\varepsilon_{B_d})}{1+|\varepsilon_{B_d}|^2} = (1.2 \pm 2.9_{stat} \pm 3.6_{sys}) \times 10^{-3}$$

CP Violation and CKM Matrix

Mass Eigenstates \neq Weak Eigenstates \Rightarrow Quark Mixing

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

CKM Matrix

Complex matrix described by 4 independent parameters

Wolfenstein parametrization: $V_{CKM} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho + i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho + i\eta) & -A\lambda^2 & 1 \end{pmatrix}$ phase

CP Violation arises from a single phase in the CKM Matrix

$$\eta = 0 \rightarrow NO \ CP \ Violation \ in \ SM$$

Unitarity of V implies, e.g. $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ Can be represented as 'unitary triangle' in complex plane

CP asymmetries in B⁰ decays give information on angles α , β , γ !

Unitarity Triangle

CKM parameters:

$$\lambda$$
, A, $\overline{\rho}$ and $\overline{\eta}$

$$\overline{\rho} = \left(1 - \lambda^2 / 2\right)\rho$$
$$\overline{\eta} = \left(1 - \lambda^2 / 2\right)\eta$$

At the 1% level: $|V_{us}|$ $\lambda = |V_{us}| = \sin \theta_c$ $\lambda = 0.2205 \pm 0.0018$

At the 5% level:
$$|V_{cb}|$$

 $A = |V_{cb}|/\lambda^2$
 $A = 0.83 \pm 0.06$

Unitarity:
$$1 + R_t + R_u = 0$$

 $\eta \qquad (\overline{\rho}, \overline{\eta})$
 $R_u \qquad (0,0)$
 $R_u = \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \approx -\sqrt{\overline{\rho}^2 + \overline{\eta}^2} e^{i\gamma}$
 $R_t = \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \approx -\sqrt{(1 - \overline{\rho})^2 + \overline{\eta}^2} e^{-i\beta}$

$$\gamma = \arg V_{ub}^*$$
, $\alpha = \pi - \gamma - \beta$

The Unitarity Triangle without CP Violation Measurements

CP Violation in Interference between Mixing and Decay

CP violation results from interference between decays with and without mixing

$$\lambda_{f_{CP}} \neq \pm 1 \implies \operatorname{Prob}(\overline{B}^0_{phys}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(B^0_{phys}(t) \rightarrow f_{CP})$$

Define time-dependent CP asymmetry:

$$\begin{split} A_{f_{CP}}(t) = & \frac{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) - \Gamma(B^0_{phys}(t) \to f_{CP})}{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) + \Gamma(B^0_{phys}(t) \to f_{CP})} \\ = & C_{f_{CP}} \cos (\Delta m_d t) + S_{f_{CP}} \sin (\Delta m_d t) \end{split}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

The "Golden" Decay Mode: ${B^0} \to J/\psi \,{K^0}_S$

- Theoretically clean mode to measure $sin 2\beta$
- Clean experimental signature
- "Large" branching fraction compared to other CP eigenstates

Requirements for CP Measurement

large # of B Mesons

- Since BR ($B \rightarrow f_{CP}$) ~ 10⁻⁴
 - high luminosity
 - excellent reconstruction efficiency
- Separate B⁰ from B⁰
 B Flavor Tagging
 - Particle ID: leptons and kaons
- Measure a time-dependent asymmetry
 - B Mesons need to have sufficient momentum
 - A high precision tracking system

BABAR Detector @ PEP-II B Factory

The Y(4S) Resonance

The BB system evolves coherently, until one of the B meson decays.

PEP-II - Asymmetric Energy B-Factory at SLAC

16

Spectacular Performance of PEP II

PEP-II maximum luminosity 4.21 x 10³³cm⁻²s⁻¹ (design: 3.0 x 10³³)

Max. recorded L/month: 5 fb⁻¹ Max. recorded L/day 282 pb⁻¹

BABAR logging efficiency: > 96%

PEP-II delivered: 50.6 fb⁻¹ BABAR recorded: 48.0 fb (includes 5.15 fb⁻¹ off peak)

October 2001

USA [35/276]

California Institute of Technology UC, Irvine UC, Los Angeles UC, San Diego UC. Santa Barbara UC, Santa Cruz U of Cincinnati U of Colorado Colorado State Florida A&M U of Iowa Iowa State U LBNL LLNL U of Louisville U of Maryland U of Massachusetts, Amherst MIT U of Mississippi Mount Holyoke College Northern Kentucky U U of Notre Dame ORNL/Y-12U of Oregon U of Pennsylvania Prairie View A&M Princeton SLAC U of South Carolina Stanford U U of Tennessee U of Texas at Dallas Vanderbilt U of Wisconsin Yale

The **BABAR** Collaboration

9 Countries 72 Institutions **554** Physicists

Canada [4/16] U of British Columbia McGill U U de Montréal U of Victoria

China [1/6]

Inst. of High Energy Physics, Beijing

France [5/50] LAPP, Annecy LAL Orsav LPNHE des Universités Paris 6/7 **Ecole Polytechnique** CEA, DAPNIA, CE-Saclay

[3/21] Germany

U Rostock Ruhr U Bochum Technische U Dresden

[12/89] Italy

INFN and U Bari INFN and U Ferrara Lab. Nazionali di Frascati dell' INFN INFN and U Genova INFN and U Milano INFN and U Napoli INFN and U Padova INFN and U Pavia INFN, SNS and U Pisa INFN, Roma and U "La Sapienza" INFN and U Torino INFN and U Trieste

Norway

[1/3]

U of Bergen

Russia

[1/13] Budker Institute, Novosibirsk

United Kingdom [10/80] U of Birmingham U of Bristol Brunel University U of Edinburgh U of Liverpool Imperial College Oueen Mary & Westfield College Royal Holloway, University of London U of Manchester Rutherford Appleton Laboratory

The BaBar Detector

SVT: 97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks) SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%$ DIRC: K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/c EMC: $\sigma_E/E = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$

Particle Identification

- *Elp* ~ 1
- Electron d*E*/d*x* measured in DCH
 - EMC shower shape
 - interaction length λ traversed
 - $\Delta \lambda$ between measured and expected λ for penetrating muon
 - number and rms of hits per layer
 - good χ^2 fit
 - EMC cluster with E> 30 MeV
 - no match with charged tracks
 - dE/dx measured in SVT and DCH
 - $\theta_{\rm C}$ from Cherenkov rings in DIRC
 - likelihood ratio for K/π discrimination
 - reconstructed from "neutral clusters" in EMC or IFR
 - π^0 and γ rejection by EMC shower shape
 - minimum separation from IFR clusters associated to tracks

Muon

Photon

Κ±

Sin2^β Analysis Strategy

Factorize the time-dependent analysis in 3 building blocks Obtain All analysis ingredients from DATA (not MC)

Analysis Ingredient Measurements (a) Reconstruction of B B[±]/B⁰ Lifetimes mesons in flavor eigenstates (b) B vertex reconstruction **B**⁰ \overline{B}^{0} -Mixing (c) B Flavor Tagging + a + b Reconstruction of neutral B **CP-Asymmetry** mesons in CP eigenstates + a + b + c

Higher precisior

Measurement of the B⁰ and B⁺ Lifetime

- Reconstruct Inclusively the vertex of the "other" B meson (B_{TAG})
- Fully reconstruct one B meson in self tagging (B_{REC})
- 2. Reconstruct the decay vertex

4. compute the proper time difference Δt 5. Fit the Δt spectra

Fully-Reconstructed Hadronic B Decays

Flavor Eigenstates B_{flav} for lifetime and mixing measurements Self-tagging hadronic decays:

Open Charm" decays b-xūd

 $B^{0} \to D^{(*)-} \pi^{+} / \rho^{+} / a_{1}^{+} \\ B^{-} \to D^{(*)0} \pi^{-}$

Charmonium Decays $b \rightarrow (c \ \overline{c}) s$

11

 $B^{0} \rightarrow J/\psi K^{*0}(K^{+}\pi^{-})$ $B^{+} \rightarrow J/\psi K^{+}, \ \psi(2S)K^{+}$

Exclusive B Decays to Charmonium States

BRANCHING FRACTIONS					
Mode	BR (×10 ⁻⁴)	(x 1			
$B^0 \to J/\psi K^0$	$8.5 \pm 0.5 \pm 0.6$	(x 1			
$B^{\scriptscriptstyle +} o J/\psi K^{\scriptscriptstyle +}$	$10.1 \pm 0.3 \pm 0.5$	(x 1			
$B^0 \to J / \psi K^{*0}$	$12.4 \pm 0.5 \pm 0.9$	(x 1			
$B^{\scriptscriptstyle +} o J/\psi K^{\star \scriptscriptstyle +}$	13.7 ± 0.9 ± 1.1	(x 1			
$B^0 \to J / \psi \pi^0$	$0.20 \pm 0.06 \pm 0.02$	(x 1			
$B^0 o J' \psi \pi^+ \pi^-$	0.46 ± 0.11 ± 0.08	(x 1			
$B^0 \rightarrow \psi(2S) \ K^0$	6.8 ± 1.0 ± 1.1	(x 1			
$B^{\scriptscriptstyle +} ightarrow \psi(2S) K^{\scriptscriptstyle +}$	$6.3 \pm 0.5 \pm 0.8$	(x 1			
$B^0 \rightarrow \chi_{c1} K^0$	5.4 ± 1.4 ± 1.1	(v 1			
$B^{\scriptscriptstyle +} o \chi_{c1} \ K^{\scriptscriptstyle +}$	$7.5 \pm 0.8 \pm 0.8$	(X 1			
$B^0 \rightarrow \chi_{c1} K^{*0}$	$4.8 \pm 1.4 \pm 0.9$				

∆z Reconstruction

- High efficiency (97%)
- Average Δz resolution is 180 μ m (<| Δz |> ~ $\beta \gamma c \tau$ = 260 μ m)
- Δt resolution function measured from data (B_{flav} sample)

$\tau_{\rm B}$ Measurement at $\Upsilon(4S)$

Need to disentangle resolution function from physics

Δt Resolution Function

- event-by-event σ(Δt) from vertex errors, dominated by tag vertex error
- Charm Lifetime induced bias leads to small correlation between the lifetime and the Resolution Function parameters

$$R = (1 - f_{tail} - f_{outlier})G(S\sigma_{\Delta t}, \mu_{core} = 0)$$

$$+ f_{tail}G(S\sigma_{\Delta t}, \mu = 0) \otimes \exp(-\Delta t / \sigma_{\Delta t} \tau_{bias})$$

$$+ f_{outlier}G(\sigma_{outlier}, \mu_{outlier})$$

$$tracks from long-lived D's in tag vertex asymmetric Resolution Function Function$$

ΥΛŤ

BABAR

 $\sigma_{\Delta z}$

0.03

0.04

~0 6 r

0.02

 $\sigma_{\Delta z}(cm)$

0.01

0

 $B^{\theta} \to D^{(*)} \bar{\pi}^{+}, \rho^{+}, a_{1}^{+}$

B Lifetime Likelihood Fit

2

5

12

- Use data to extract the properties of background events
 - Mass distribution provides the signal probability
 - Use the events in the sideband (m_{ES} < 5.27) to determine the Δt structure of the background events under the signal peak
- 19 free parameters
 - $\tau(B^+)$ and $\tau(B^0)$
 - Δt signal resolution
 - empirical background description

B Lifetime Results: Calibration of BABAR Clock

$ au_{o}$	$= 1.546 \pm 0.032 \pm 0.022$ ps
	PDG: 1.548 ± 0.032 ps
$ au_{\pm}$	$= 1.673 \pm 0.032 \pm 0.022$ ps
	PDG: 1.653 ± 0.028 ps
τ_{\pm}/τ_{o}	$= 1.082 \pm 0.026 \pm 0.011$
	PDG: 1.062 ± 0.029

- Precision measurement !
 - 2 % statistical error
 - 1.5% systematic error
- Dominant systematic errors:
 - Parameterization of the ∆t resolution function
 - Description of events with large measured \Deltat (outliers)

30

B⁰B⁰ Mixing with Fully Reconstructed Decays

5. compute the proper time difference Δt
6. Fit the Δt spectra of mixed and unmixed events

B Flavor Tagging Methods

Hierarchical Tagging Categories

For electrons, muons and Kaons use the charge correlation

0.25

0

0.5

B Flavor Tagging Performance Using B Mixing

The large sample of fully reconstructed hadronic B decays provides the precise determination of the tagging performance

	Tagging category		Fraction of tagged events ε (%)	Wrong tag fraction w (%)	Q	= ε (1-2w) ² (%)
	Lepton		10.9 ±0.3	8.9 ± 1.3 🕨		7.4 ± 0.5
	Kaon		🖈 35.8 ±0.5	17.6 ± 1.0		15.0 ± 0.9
	NT1		7.8 ±0.3	22.0 ± 2.1		2.5 ± 0.4
	NT2		13.8 ±0.3	35.1 ± 1.9		1.2 ± 0.3
	ALL		68.4 ±0.7		26.1 ± 1.2	
Highest "efficiency"		e error on sin2 β : Quality Factor C		C	Smallest mistag fraction	
$\sigma(\sin 2\beta) \propto \frac{1}{\sqrt{Q}}$						

Δt Spectrum of Mixed and Unmixed B Events

Δt Resolution Function for Δm and CP Fit

Unbinned maximum likelihood fit to flavor-tagged neutral Bs

$$f_{\text{Unmix}}(\Delta t) = \left\{ \begin{array}{l} \frac{e^{-|\Delta t|/\tau_{B_d}}}{4\tau_{B_d}} \times \left(1 \pm (1-2w) \cos(\Delta m_d \Delta t)\right) \right\} \otimes R$$
Fit Parameters
$$\Delta m_d$$
Mistag fractions for B^o and B^o tags
Signal resolution function(scale factor, bias, fractions)
Empirical description of background Δt
B lifetime fixed to the PDG value
$$\tau_{\text{B}} = 1.548 \text{ ps}$$

34 total free parameters

All Δt parameters extracted from data

F

B⁰B⁰ Mixing Fit Result

Δm_d Measurement in Comparison

Measurement of CP Asymmetry : Sin2β

3. Reconstruct Inclusively the vertex of the "other"
B meson (B_{TAG})
4. Determine the flavor of B_{TAG}

 Fully reconstruct one B meson in CP eigenstate (B_{CP})
 Reconstruct the decay vertex ✓

5. compute the proper time difference Δt 6. Fit the Δt spectra of B⁰ and B⁰ tagged events

The CP Event Sample

Decay Time Evolution & A_{CP} for $B^0 \rightarrow \psi K_S^0$

Δt Spectrum of CP Events

sin2β Likelihood Fit

Combined unbinned maximum likelihood fit to Δt spectra of flavor and CP sample

Fit Parameters Sin2β Mistag fractions for B^0 and $\overline{B^0}$ tags in each Cat. Signal resolution function Empirical description of background Δt B lifetime fixed to the PDG value Mixing Frequency fixed to the PDG value

tagged CP samples tagged flavor sample $\tau_{\rm R} = 1.548 \ {\rm ps}$ $\Delta m_{d} = 0.472 \text{ ps}^{-1}$

Global correlation coefficient for $sin 2\beta$: 13% Different Δt resolution function parameters for Run1 and Run2

45 total free parameters

- ✓ All ∆t parameters extracted from data
 ✓ Correct estimate of the error and correlations

The sin2 β analysis was done blind to eliminate possible experimenters' bias

- The amplitude in the asymmetry $A_{CP}(\Delta t)$ was hidden by arbitrarily flipping its sign and by adding an arbitrary offset

– The CP asymmetry in the Δt distribution was hidden by multiplying Δt by the sign of the tag and by adding an arbitrary offset

- The blind aproach allows systematic studies of tagging, vertex resolution and their correlations to be done while keeping the value of $sin 2\beta$ hidden

- The result was unblinded 1 week before public announcement this summer!

Raw CP Asymmetry in Clean Charmonium Modes

Raw CP Asymmetry for $\psi~K_L$

v. Lüth

Sin2ß Results

Consistency Checks

 $\sin 2\beta$ vs. ψ decay mode, tagging category and flavor for $\eta = -1$ events

CP Asymmetry Corrected For B Oscillation

deltaT (ps)

Major Sources of Systematic Error in Sin2 β

Measurement is Statistics Dominated

Error/Sample	K _S	KL	K*0	Total
Statistical	0.15	0.34	1.01	0.14
Systematic	0.05	0.10	0.16	0.05

- Signal resolution and vertex reconstruction ± 0.03
 - Resolution model, outliers, residual misalignment of the Silicon Vertex Detector
- Flavor Tagging

 ± 0.03

- possible differences between B_{CP} and B_{flavor} samples
- Background Characterization: ± 0.02 (overall)
 - Signal probability, fraction of B⁺ background in the signal region, CP content of background
 - Total 0.09 for ΨK_L channel; 0.11 for ΨK^{*0}
- Total Systematic Uncertainty: ± 0.05 for total sample

Search for Direct CP Violation

$$\begin{split} A_{f_{CP}}(t) = C_{f_{CP}} \cos(\Delta m_d t) - S_{f_{CP}} \sin(\Delta m_d t) \\ \text{If more than one amplitude} \\ \text{contributes then } |\lambda| \text{ might be} \\ \text{different from 1} \\ \end{split} \\ S_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2} \\ S_{f_{CP}} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2} \end{split}$$

To probe new physics (only use η_{CP} =-1 sample that contains no CP background)

$|\lambda| = 0.93 \pm 0.09$ (stat) ± 0.03 (syst)

No evidence of direct CP violation due to decay amplitude interference (S_{CP} unchanged in Value)

Simultaneous extended Maximum Likelihood fit to the BRs and CP asymmetries:

- 8 event samples (Signal and Bkg: π⁺π⁻, K⁺π⁻, K⁻π⁺, K⁺K⁻) measure also direct CP violation in charge asymmetry
 A = N(K⁻π⁺)-N(K⁺π⁻)/N(K⁻π⁺)+N(K⁺π⁻)
 - Discriminating variables (m $_{\text{ES}}, \, \Delta\text{E}$, Fisher, Cherenkov angles, $\Delta t)$
 - Mistag rates and Δt signal resolution function same as in sin2β fit (uses also untagged events to improve BR measurements)
 - Δm_d , B⁰ lifetime fixed
 - Empirical background parameters determined from m_{ES} sidebands

CP Sample $B^0 \rightarrow \pi^+ \pi^-$

Lepton Photon 2001

CP Asymmetry and Fit Results

Preliminary Results

 $S(\pi^{+}\pi^{-}) = 0.03^{+0.53}_{-0.56}(stat) \pm 0.11(syst)$ $C(\pi^{+}\pi^{-}) = -0.25^{+0.45}_{-0.47}(stat) \pm 0.14(syst)$ $A_{CP}(K^{\pm}\pi^{\mp}) = -0.07 \pm 0.08(stat) \pm 0.02(syst)$

First measurement

- compatible with no CP Violation
- Statistics limited
- Need ~ 500/fb for $\sigma(S\pi\pi)$ ~ 0.10

Summary and Outlook

BABAR has observed CP violation in the B⁰ system at 4.1σ level

$$sin 2\beta = 0.59 \pm 0.14 \pm 0.05$$

- Probability to observe an equal or larger value if no CP violation exists is < 3 x 10⁻⁵
- Corresponding probability for the η_{CP} = -1 modes only is < 2 x 10⁻⁴
- New precision measurements of B^0/B^+ lifetimes and B^0B^0 Oscillation frequency Δm_d

$$\begin{split} \tau_0 &= 1.546 \pm 0.032 \pm 0.022 \text{ ps} \\ \tau_{\pm} &= 1.673 \pm 0.032 \pm 0.022 \text{ ps} \\ \tau_0 / \tau_{\pm} &= 1.082 \pm 0.026 \pm 0.011 \\ \Delta m_d &= 0.519 \pm 0.020 \pm 0.016 \text{ h ps}^{-1} \end{split}$$

The Unitarity Triangle and This Measurement

)

- The agreement of measured sin2β with Standard Model prediction suggests that the B_d mixing phase φ_d is indeed due to the phase of the CKM element V_{td}
- Like for the EW precision data, the lack of deviations from the CKM mechanism leaves us with a puzzle
 - CKM does not explain baryon asymmetry
 - All extensions of the SM contain many new CP violating parameters, e.g. minimal unconstrained SUSY has 43 new CP phases!
- Does this mean that the non-standard CP violating effect are decoupled just like New Physics in the EWSB sector appears to be decoupled ??
- Further searches for probably small deviations from CKM with more precise diverse measurements to come!

Summary and Outlook (cont.)

First measurement of time-dependent CP asymmetry in rare B decay mode $B \rightarrow \pi^+\pi^-$

 $S(\pi^{+}\pi^{-}) = 0.03^{+0.53}_{-0.56}(stat) \pm 0.11(syst)$

 $C(\pi^{+}\pi^{-}) = -0.25^{+0.45}_{-0.47}(stat) \pm 0.14(syst)$

• The study of CP violation in the B system has started:

- sin2β will very soon become precision measurement (i.e. unitarity triangle constraints will be limited by other CKM parameters)
- Need to compare sin2β from different decay modes to test standard model
- With anticipated 100 fb⁻¹ by next summer, error on sin2 β will be ± 0.08 , error on asymmetry of B $\rightarrow \pi^+\pi^-$ will be ± 0.3 !

- V_{cb} and V_{ub} from inclusive semi-leptonic B decays
- CP violating effects in rare B decays
 - $\sin 2\beta_{\phi k} = ? \sin 2\beta_{\psi k}$
 - $A_{CP}(B \rightarrow X_S \gamma) = ? 0$
 - $\gamma_{\pi\kappa} = ? \gamma_{\text{tree}}$

- $b \rightarrow sss penguins$
- radiative penguins
 - penguin vs tree

- New physics in $B \rightarrow K / / /$
- New Physics in D (and K) decays
 - D mixing
 - Charm weak decays
 - (Rare K decays, K $\rightarrow \pi \nu \nu$)
- CP violation without flavor violation ?

Luminosity Plans for BABAR & PEP II

