Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

Physics Potential of BABAR with 1 ab⁻¹

Heiko Lacker (TU Dresden) on behalf of the *BABAR* collaboration

14.3.2006, DESY Hamburg

Physics Programme of BABAR

More than just a B-factory

* tau, charm, ISR, two photon physics

=> Rare τ ($\tau \rightarrow l \gamma$, ...) & charm ($D^0 \rightarrow l^+l^-$, ...) decays; R, ...

* Spinoff:

1. Many new unexpected states discovered (D_{SI}, Y(4260), ...)

2. Pentaquark searches in different environments

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

BABAR & PEP II STATUS and PLANS

111111111111

7-2000 8558A1

An almost pure B-meson source: Y(4S)

- + S/B ~ 1/3.5 (Hadron Machines O(10⁻³))
- Small cross section => High luminosity needed and realized @ PEP-II/BABAR und KEKb/Belle

The B-Factories

PEP II Plans

Goals:

- * 1.2 x 10³⁴ spring 2006 (3300 mA LER, 1700 mA HER)
- * Improve peak lumi to 2 x 10³⁴ by 2008

2006: Double data to 450 fb⁻¹ 2008: Double again to 1000 fb⁻¹

BABAR Detector

BABAR, NIM A479, 1 (2002)

Innovative PID @ **BABAR**: DIRC

BABAR-DIRC, NIM A502, 67 (2003)

Detection of Internally Reflected Čerenkov light

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

CKM matrix & & CP violation

11111111

7-2000 8558A1

9

e*

Origin of CKM-Matrix:

Mass versus Weak Interaction Eigenstates

$$L_{quark\ masses} = \bar{u}_L M_u u_R + \bar{d}_L M_d d_R + h.c., \quad u \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix}, \quad d \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix} \quad \begin{array}{c} M_u, M_d \\ \text{complex} \\ 3x3-\text{Matrices} \end{array}$$

1 \

DIAGONALISATION:
$$M_{u,diag} = U_L^+ M_u U_R \quad M_{d,diag} = D_L^+ M_d D_R$$

CP violation quantitatively: Unitarity Triangle

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

Veni, vidi, vici: $sin2\beta$

7-2000 8558A1

e*

Different manifestations of *CP* **violation**

$$i\frac{d}{dt} \begin{pmatrix} B^{0} \\ \bar{B}^{0} \end{pmatrix} = \left(M - \frac{i}{2} \Gamma \right) \begin{pmatrix} B^{0} \\ \bar{B}^{0} \end{pmatrix} \qquad \begin{array}{l} |B_{L} > \propto p | B^{0} > + q | \bar{B}^{0} > \\ |B_{H} > \propto p | B^{0} > - q | \bar{B}^{0} > \\ \Delta m_{B} \equiv M_{H} - M_{L} \end{array}$$

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^{0}(t) \to f_{CP}) - \Gamma(B^{0}(t) \to f_{CP})}{\Gamma(\bar{B}^{0}(t) \to f_{CP}) + \Gamma(B^{0}(t) \to f_{CP})}$$

$$= \frac{2 \operatorname{Im} \lambda}{1 + |\lambda|^{2}} \sin(\Delta m_{d} t) - \frac{1 - |\lambda|^{2}}{1 + |\lambda|^{2}} \cos(\Delta m_{d} t)$$
Oscillation
frequency

$$t = 0$$

$$B^{0} \qquad A_{f_{CP}} \qquad t$$

$$q/p \qquad B^{0} \qquad A_{f_{CP}} \qquad t$$

$$f_{CP} \qquad f_{CP} \qquad f_{CP}$$

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \qquad \frac{q}{p} \qquad A_{f_{CP}}$$

$$CP-Eigenvalue$$

CP violation in *Mixing*:

CP violation in *Decay*:

CP violation in *Interference between decay with and without Mixing:*

$$|q/p| \neq 1$$
$$|\bar{A}_{f_{CP}}/A_{f_{CP}}| \neq 1$$
$$\operatorname{Im} \lambda_{f_{CP}} \neq 0$$

CP violation in decay in the B system

Time-dependent CP violation: Experimental Technique

Nature distinguishes Matter from Antimatter

Expected CP asymmetry:

Evolution of sin2\beta measurements

CP violation & CKM matrix 2006: a new era

NP in quark flavor sector ? \rightarrow Era of precision measurements started Measure all flavor transitions as precisely as possible

$sin2\beta$ uncertainties vs. integrated luminosity

At 1 ab^{-1} , $sin 2\beta$ uncertainty can be improved by nearly a factor of 2.

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

 $sin2\beta$ in b \rightarrow s modes: Hunting New Physics in decays

7-2000 8558A1

Confronting Loop Decays with Tree Dominance

 $b \rightarrow c \overline{c} s$: tree and penguin diagrams with equal dominant weak phases

 $b \rightarrow s \overline{s} s$: pure "internal" and "flavor-singlet" penguin diagrams

High virtual mass scales involved: sensitive to New Physics

Clean and less clean penguin modes

Experimental situation and outlook

Averaging all penguin modes misleading:

- 1. SM uncertainties different
- 2. NP effects likely to be different

Deviation from Standard Model

Assume that current values stay the same and compare with theoretical expectation

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

Better than expected: the angle α

1111111111

Л

e⁺

"Charmless" $b \rightarrow u$ Decays

★ If penguin is negligible

ideal scenario

Time-dependent CP observable

$$A_{\pi^+\pi^-}(t) = \sin(2\alpha)\sin(\Delta m_d t)$$

However: Penguin contribution <u>not</u> negligible!

$$\begin{aligned} |\lambda| \neq 1 & \Rightarrow C_{\pi\pi} \neq 0 \\ Im(\lambda) \neq sin(2\alpha) \Rightarrow S_{\pi\pi} \sim sin(2\alpha_{eff}) \\ \Rightarrow |P_{\pi\pi}/T_{\pi\pi}|, \delta = arg(P_{\pi\pi}/T_{\pi\pi}) ? \end{aligned}$$

Isospin Analysis for $\boldsymbol{B} \rightarrow \pi \pi, \rho \rho$

SU(2) analyses : Gronau-London, PRL 65, 3381 (1990), Lipkin et al., PRD 44, 1454 (1991), a.o.

$$\cos(2\alpha - 2\alpha_{eff}) \ge \frac{1 - 2B^{00} / B^{+0}}{\sqrt{1 - C_{\pi\pi}^2}}$$

Grossman-Quinn 98; Charles 99; Gronau-London-Sinha-Sinha 01

BR($\pi^{+}\pi^{-}$) = (5.0 ± 0.4)·10⁻⁶ BR($\pi^{\pm}\pi^{0}$) = (5.5 ± 0.6)·10⁻⁶ BR($\pi^{0}\pi^{0}$) = (1.45 ± 0.3)·10⁻⁶

Bound is weak. Full SU(2) analysis needed $C(\pi^0 \pi^0) = 0.28 \pm 0.40$

α can be extracted up to8-fold ambiguity within [0,π]

Results for $B^0 \rightarrow \pi^+ \pi^-$

A "surprise" : $B^0 \rightarrow \rho^+ \rho^-$

***** BF's for $B \to \rho \rho$ (WA): $B^{+-} = (26.2 + 3.6) \times 10^{-6}, B^{+0} = (26.4 + 6.1) \times 10^{-6}, B^{00} < 1.1 \times 10^{-6} @ 90\%$ CL

★ B → VV can have $L_{VV} = 0, 1, 2$ $CP(L_{VV}=0,2) = +1$ & $CP(L_{VV}=1) = -1$ $f_L(\rho^+\rho^0) = 0.97^{+0.07}_{-0.05}, f_L(\rho^+\rho^-) = 0.971^{+0.031}_{-0.030}$ => almost no CP dilution

BABAR (232 M)	Belle (275 M)	
$S_{\rho\rho}$ -0.33 ± 0.24 ^{+0.08} -0.14	$S_{\rho\rho}$ 0.09 ± 0.42± 0.08	
$C_{\rho\rho}$ -0.03 ± 0.18 ± 0.09	$C_{\rho\rho}$ 0.00 ± 0.30^{+0.10}	

The third way to α : Time-dependent Dalitz plot analysis $B^0 \rightarrow \pi^0 \pi^+ \pi^-$

Snvder & Ouinn, PRD 48, 2139 (1993)

Extraction of α without ambiguity!

Combination of ππ, πππ, ρρ

Combining the three analyses (dominated by $\rho\rho$ and $\pi\pi\pi$):

 $B \rightarrow \pi \pi$:Needs large statistics $B \rightarrow \rho \rho$:Currently best constraint; Size of B^{00}/B^{+0} ? $B \rightarrow \pi \pi \pi$:Will become more and more important

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

The opportunity one should not miss:

 \mathbf{h}

7-2000 8558A1

q†

The Measurement of γ : Methods

Atwood-Dunietz-Soni, PRL 78, 3257 (1997)

Giri-Grossman-Soffer-Zupan, PRD 68, 054018 (2003)

The "GGSZ" Dalitz Analysis

• GGSZ : $B^- \to D^{0}(\to K_{S}\pi^{+}\pi^{-}) K^{-}$: Interference between amplitudes in Dalitz plot

$$\begin{aligned} A_{-}(m_{-}^{2}, m_{+}^{2}) &= |A(B^{-} \to D^{0}K^{-})|(f_{-+} + r_{B}e^{i(\delta - \gamma}f_{+-})) \\ CP \\ A_{+}(m_{+}^{2}, m_{-}^{2}) &= |A(B^{+} \to \overline{D}^{0}K^{+})|(f_{+-} + r_{B}e^{i(\delta + \gamma)}f_{-+}) \end{aligned}$$

Sum of amplitudes contributing to $D^{0} \rightarrow K_{s} \pi^{+} \pi^{-}$ $f_{+-} = f(m_{+}^{2}, m_{-}^{2})$ $m_{\pm} = m(K_{s}^{0} \pi^{\pm})$

Simultaneous measurement of r_B , δ and γ

The "GGSZ" Dalitz Analysis: Dalitz plane model

BABAR PRL 95(2005) 121802

"GGSZ": Constraint on γ

Results for γ

$$\gamma_{meas} = \left(63^{+15}_{-12}\right)^{\circ} \qquad \gamma_{CKM} = \left(57^{+7}_{-13}\right)^{\circ}$$

Projection for γ

Muon/Hadron Detector

Magnet Coil

Electron/Photon Detector

Cherenkov Detector

Tracking Chamber

Support Tube

Vertex Detector

e

Rare decays Standard Model & New Physics: Ex: $B \rightarrow \tau \nu$

7-2000 8558A1

$\textbf{B} \to \tau \nu$

- Helicity-suppressed annihilation decay sensitive to $(f_B * |V_{ub}|)^2$
- Powerful together with Δm_d : removes f_B (Lattice QCD) dependence
- Sensitive, e.g., to charged Higgs replacing the W-propagator

Experimental techniques:

 $\mathbf{B} \to \tau \nu$

BABAR: $BF(B^+ \rightarrow \tau^+ \nu_{\tau}) < 2.6 \ 10^{-4} \ @ 90 \% \ C.L.$

Belle:
$$BF(B^+ \to \tau^+ \nu_{\tau}) < 1.8 \ 10^{-4} @ 90\% C.L.$$

Prediction from global CKM fit:

$$BF(B^{+} \rightarrow \tau^{+} \nu_{\tau}) = (8.2^{+1.7}_{-1.3}) \ 10^{-5}$$

$$\binom{+5.0}{-2.2} @\ 95\% \ C.L.)$$

New Physics: $\textbf{B} \rightarrow \tau \nu$

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\rm SM} \times r_H,$$
$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$$

Phys. Rev. D 48, 2342 (1993)

2HDM

Gambino, Misiak Nucl. Phys. B611 338 Hou Phys.Rev.D48:2342-2344,1993

Projections and LHC: $\textbf{B} \rightarrow \tau \nu ~\&~ \textbf{b} \rightarrow s \gamma$

Uncertain regions could be clarified by B-Factories
depends on all other SUSY parameters ...

Conclusions

- * PEP II/BABAR very successful: Luminosity, detector (e.g. DIRC)
- * BABAR physics programme until 2008: rich & competitive Many analyses will be performed with 4 x current statistics
- * Large luminosity => analyses on recoil of fully reconstructed B decays
- * Precision on CKM parameters will be significantly improved:
 σ(sin2β)≈0.02, σ(α)≈8°, σ(γ)≈10°
- * Interesting opportunities to look for NP: sin2β in penguin modes: σ(φK_s)≈0.08, σ(η'K_s)≈0.07
 Rare B decays: e.g. B→τν (SM: expect evidence by 2008)
- * More than just a B-factory!

Most recent news from flavour physics

Discriminating between models

Buchalla, Hiller, Nir, Raz (hep-ph/0503151): differences among the values of S in several modes would discriminate between models. Wilson coefficients:

The "GLW" Analysis

• Problem: interference of amplitudes with very different sizes

The "ADS" Analysis

The "GGSZ" Dalitz Analysis: sensitivity to $\boldsymbol{\gamma}$

