

Measurement of the *bb* Production Cross Section in Proton-Nucleus Collisions at Hera-B

P. Kreuzer University of California, Los Angeles For the Hera-B Collaboration

- Motivations
- Provide the state of the sta
- 8 The Measurement: $b \rightarrow J/\psi(I^+I^-) + X$
- Omparison with Data & QCD Predictions
- **6** Conclusions

(hep-ex/0205106 + submit. EPJ C)

ICHEP 2002 Conference Amsterdam, July 27 2002

Motivations for a *bb* cross section measurement at Hera-B

A test for QCD Predictions:

 \rightarrow Recent improvements but still large uncertainties !

Fixed	Exp	Targ	p Beam	σ(<i>bb</i>) n <u>b</u> /nucleon	Channel	
Target	E789	Au	800 (GeV/c)	5.7 ±1.5 ±1.3	<i>b</i> →J/ψ(μ [±]) Χ	
Data:	E771	Si	800 (GeV/c)	$43 {}^{+27}_{-17} \pm 7$	<i>bb</i> →(μ⁺+X)(μ⁻+X)	

→ Hera-B can extend the experimental panorama by covering both b→J/ ψ (e[±]) and b→J/ ψ (µ[±]) & the non-exploited negative x_F region ($x_F = \frac{p_L^{cms}}{(p_T^{cms})}$)

The Hera-B Detector

(920 GeV p-N interactions)

Y2K J/ψ -coverage: -0.25 < x_F < 0.15 (now -0.4< x_F <0.3)

The Hera-B Di-lepton Trigger (Y2K)

P.Kreuzer - BBbar at Hera-B - ICHEP2002 Amsterdam

Prompt J/ψ selection

Reconstruction based on Trigger tracks + Vertex + Particle ID

Muon Channel:

Electron Channel:

P.Kreuzer - BBbar at Hera-B - ICHEP2002 Amsterdam

Isolating the b signal

Total (prompt) J/ψ signal

Detached $b \rightarrow J/\psi$ signal

P.Kreuzer - BBbar at Hera-B - ICHEP2002 Amsterdam

Detached b selection (e channel)

Invariant Mass fit

 $\Delta \sigma(b\overline{b}) = 30^{+13}_{-11} \text{ (stat) } \text{nb/nucl} (-0.25 < x_F < 0.15)$

Systematic Uncertainties

External (internal) sources	Ch	Syst %			
σ _r	eμ	11	dominated	ch	Syst %
BR(bb→J/ψX)	e μ	9	by statistics		<i>Gy31 10</i>
Trigger & detector sim. (ϵ_R)	eμ	5	u⁺u⁻ bka	μ	+10 -24
b production/decay models	eμ	5	fluctuations		
MRST NNLL Parton Distr. F., Peterson Fragment., Pythia)			e⁺e⁻ bkg shape	e	7
Prompt counting J/ψ (n _p)	e	5	e⁺e⁻ bkg fluctuations	e	11
Prompt J/ψ MC prod. Mod.	eμ	2.5	Partial	e -µ	13 - ⁺¹⁰ ₋₂₄
A-dependence in $\epsilon_R \epsilon^{\Delta z}_B$	eμ	1.7	contribution		
Partial contribution	e -µ	17-16			

Total systematic uncertainty

+20 % -23 %

eμ

Hera-B compared to other data/theory

The result shows good agreement with recent calculations beyond NLO

R. Bonciani *et al.* (2002), NLO+NLL with latest MRST PDF Nucl.Phys.B529 (1998) N. Kidonakis *et al.* (2001), NLO+NNLL Phys.Rev D64 (2001) 114001-1

Conclusions

 ${\boldsymbol{\twoheadrightarrow}} {\boldsymbol{\mathcal{B}}} \to {\boldsymbol{J}}/\psi \; {\boldsymbol{X}} \to {\boldsymbol{I}}^{\scriptscriptstyle +} {\boldsymbol{I}}^{\scriptscriptstyle -} {\boldsymbol{X}}$ observed at Hera-B

→Result: $\sigma(b\overline{b}) = 32^{+14}_{-12}$ (stat) $^{+6}_{-7}$ (sys) nb/nucleon

→Good compatibility with recent QCD calculations

→Outlook 2002/3: O(1000) higher statistics !

→ Baseline Physics program

- $\sigma(bb)$: expected error 15% (systematic limited)
- Charmonium production $(J/\psi, \psi', \chi_c)$, Atomic number dependence

Detector characteristics (I)

- ★ Large acceptance: 15-220 mrad in x (bending plane), 15-160 mrad in y (vertical plane)
- ★ Target up to 8 wires inserted into the halo of 920 GeV proton beam (C, Ti)
- * VDS Vertex Detector System.

Dilepton vertex resolutions: $\sigma_z \approx 600 \ \mu\text{m}$, $\sigma_{x,y} \approx 70 \ \mu\text{m}$

- * Dipole Magnet- field integral 2.13 Tm
- OTR Outer Tracker. Honeycomb drift cells; wire pitch 5/10 mm; spatial hit resolution ≈ 350 µm; Backward hemisfere in CM (negative x_F)
 World lengent honeycomb tracker: 1000 modules, 115000 channels

World largerst honeycomb tracker: 1000 modules, 115000 channels

* ITR – Inner Tracker: MicroStrip Gas Chambers, pitch 100 $\mu\text{m},$ resolution 100 $\mu\text{m};$

Forward hemisfere in CM (positive x_F)

World largerst (gas) micro pattern tracker

Detector characteristics (II)

- ★ RICH Ring Imaging Cherenkov Hodoscope
 C₄F₁₀ radiator gas, 2 planes of PMT
 4σ separation: e/π p ∈ [3.4, 15] GeV/c, π/K p ∈ [12,54] GeV/c
- * ECAL Electromagnetic CALorimeter Sandwich sampling calorimeter ("Shashlik"); Pb and W as converter; 3 regions
- MUON detector 4 tracking stations; Gas pixel chambers, Proportional tube chambers, some with segmented cathodes
- * DAQ system High bandwidth, high trigger and logging rates
- ★ TRIGGER.
 - Pretriggers on ECAL & MUON seeds
 - FLT hardware based on ITR/OTR
 - SLT software trigger; Tracking+Vertexing; linux farm with 240 nodes
- * Event reconstruction; on-line, linux farm with 200 nodes

The cross section normalization

[-0.25<x_F<0.15]

Prompt J/ψ : Particle ID / Kinem.

0.15 0.2

3.5

GeV/c

 X_F

<u>0.1</u>

Detached b $\rightarrow J/\psi$ cuts

Optimization procedure:

S_{MC}

$$\sqrt{BKG_{REAL}}$$

Electron Channel Cuts:

$$\epsilon_R \epsilon_B^{\Delta z} = 0.44 \pm 0.02$$

- $-\Delta z > 0.5$ cm
- e* Imp. Param. wire $\textbf{I}_{\textbf{w}}$ > 200 $\mu\textbf{m}$, or
- Min. dist. @ Z_w to any other track > 250 μm

Muon Channel Cuts:

 $\epsilon_{R} \epsilon_{B}^{\Delta z} = 0.41 \pm 0.01$

- $\Delta z \rightarrow 7.5 \sigma_z$
- μ^{\pm} Imp. Param. to wire I_w >45 μm
- μ^{\pm} " to primary vtx I_p > 160 μ m

Systematic checks (e-channel

DECAY LENGTH

Different bkg optimization:

$\sigma(b\bar{b})$ Determination

Simultaneous fit to $e^+e^- \& \mu^+\mu^-$ (in Hera-B acceptance):

J/ψ from *b* decays kinematics

92% of J/ψ are produced in our x_F range

b production model

For the x_F and p_T distributions of J/ψ from *b* decays, we need a model of the *b* quark production and hadronization

Our b production & decay model:

- Based on HQ cross section calculation at NLO+NLL by M. Mangano, P. Nason and G. Ridolfi, Nucl. Phys. B373 (92) 295 $m_b = 4.75 \ GeV/c^2$ $\mu = \sqrt{m_b^2 + p_T^2}$
- Latest MRST parton distribution functions (NNLL) for nucleons
- Intrinsic k_T of interacting partons is gaussian-distributed with $\langle k_T^2 \rangle = 0.5 \text{ GeV}^2$
- *b* quarks fragmentation given by a Peterson function (ε = 0.006)
- The b-hadron decays to J/ψ is controlled by Pythia

92% of J/ ψ from *b* decays are produced in our x_F range

b production model systematics

Default model: MRST PDF, Peterson FF ϵ =0.006 m_b = 4.75 GeV/c² $\mu_0 = \sqrt{m_b^2 + p_T^2} < k_T^2 >= 0.5 \text{ GeV/c}^2$

Studied variations:

- Changing PDFs from MRST to CTEQ
- *b* quark mass from 4.5 to 5.0 GeV/c²
- QCD renormalization scale μ from 0.5 μ_{o} to 2 μ_{o} \rightarrow ±2%
- Fragmentation functions
 - Peterson form with ϵ from 0.002 to 0.008
 - Kartvelishvili form with α_{β} from 12.4 to 15.0
- $\langle k_T^2 \rangle$ from 0.125 to 2.0 GeV²
- Fraction of *b*-baryons produced in the
 b-hadronization process from 0 to 12%

Total: ±5%

P.Kreuzer - BBbar at Hera-B - ICHEP2002 Amsterdam

Sys cont. to $\sigma(bb)$

 \rightarrow ±1.5%

 \rightarrow ±1%

 \rightarrow ±3%

 \rightarrow +1%

 \rightarrow ±2%

Essential Bibliography

P.Mangano et al., Nucl. Phys. B373 (92) 295

P.NASON, QCD at High Energy, Proc. Of the XX Int. Symp. on Lepton and Photon Interactions at High Energies, hep-ph/0111024

P.NASON et al., Adv. Ser. Direct. High Energy Phys. 15(1998), 609

N. Kidonakis et al., Phys.Rev. D64 (2001) 114001-1

- R. Bonciani et al., Nucl. Phys. B529 (1998) 424
- T. Alexopoulos et al., Phys. Rev. Lett. 82 (1999) 41
- D.M.Jansen et al., Phys.Rev.Lett.74 (1995)3118
- M.H. Schub et al., Phys.Rev.Lett. D52 (1995) 1307