Inclusive Neutral Current Scattering at HERA and α_s

Remarks to Status and Future

Max Klein (H1, DESY Zeuthen)

-recent measurements of the proton structure function F2 at HERA

-the strong coupling constant and the role of fixed target experiments

-the gluon momentum density (xg) and the longitudinal structure function (FL)

-determination and assumptions on parton distribution functions (pdf)

-summary

DESY Forum on QCD, pdfs ..., part I, 25.3.2003

HERA: F2 is rising towards low Bjorken x - observed with 20nb-1

MK DESY Forum , 25. 03. 2003

MK DESY Forum , 25. 03. 2003

not shown due to lack of time

HERA results on the strong coupling constant from F2

•H1
 0.1150 +- 0.0017(exp) + 0.0009 - 0.0007(model)
 proton data and only H1+BCDMS
 Q2(H1)>3, Q2(BCDMS)>7GeV2,W2>10GeV2
 EPJ C21(01)33
 R.Wallny Thesis 01-058
 if: systematic errors are not fitted: +0.0005
 NMC replaces BCDMS 0.116+-0.003 (exp)
 4 light flavours: +0.0003
 BCDMS deuteron data added: 0.1158 +- 0.0016 (exp)

0.1166 + -0.0008(unc) + -0.0032(corr) + -0.0036(norm) + -0.0018(model)

p:BCDMS,NMC,E665 d:NMC,E665 d/p: NMC xF3: CCFR

systematic errors are not allowed to vary in chi2 minimisationQ2>2.5 GeV2, W2>20GeV2, RT-VFNShep-ex/0208023fit alphas, xg, uv, dv, sea, dbar-ubar (MRST)PR D67(03)012007if fixed flavour scheme is used: +0.0010M.Botje programme

H1-DIS measurement of alphas with H1 and BCDMS data

joint determination of alphas, xg, V,A no interest in quarks \rightarrow two pdfs only

9 F2 = 3 xV +11xA = 4xU+xD

→chi2+1 well defined two consistent exp data sets

x space: C.Pascaud, F.Zomer, DESY 96-266

pull distributions: DIS data consistent with NLO pQCD

the problem of the BCDMS data

alphas (BCDMS) very low and strongly y dependent ("electron method") low y - large x region in conflict with SLAC F2

shifts imposed by QCD fit to BCDMS data

Collaboration

Ξ

Three-loop : fermionic contributions to nonsinglet splitting function

S.M., Vermaseren, Vogt hep-ph/0209100

$$P_{nx}^{(2)}(x) = 16C_{A}C_{F}n_{f}\left(p_{qq}(x)\left[\frac{5}{9}\zeta_{2}-\frac{209}{216}-\frac{3}{2}\zeta_{3}+\frac{1}{3}L\dot{a}_{3}(x)-\frac{167}{108}\ln(x)+\frac{1}{3}\ln(x)\zeta_{2}-\frac{1}{4}\ln^{2}(x)\ln(1-x)\right)$$

$$-\frac{7}{12}\ln^{2}(x)$$

$$NNLO corrections to pQCD$$

$$+\frac{5}{18}\ln^{2}(x)$$

$$NLO folklore: vary renorm, scale (\frac{1}{4}...4) Q2 \Rightarrow determines thy error$$

$$+(1+x)\left[\frac{1}{2}\right]$$

$$H1: quote uncertainty of +-0.005$$

$$H1: quote uncertainty of +-0.005$$

$$ZEUS: use (1/2...2): mention uncertainty of +-0.004$$

$$+\frac{5}{54}\ln(x)$$

$$-\frac{2}{3}L\dot{a}_{3}(x) +$$

$$moment analyses: compare NLO with NNLO: -0.001 (Santiago & Yndurain)$$

$$NP, hep-ph/0102247$$

$$x) - \frac{1}{18}\ln^{3}(x)$$

$$+p_{qq}(-x)$$

$$full calculations to 3 loop anomalous dimension progressing$$

$$n^{2}(x)\ln(1+x)$$

$$+\frac{20}{9}L\dot{a}_{2}(-$$

$$NNLO has to include charm treatment in NNLO (mc +-100MeV is +-.0005)$$

$$1+x)$$

$$higher experimental precision of HERA F2: challenge is less than 1 per cent
with efficient tracking + high resolution calorimetry + accurate/lots of lumi
$$-\delta(1-x)\left[\frac{1}{16}-\frac{1}{12}\zeta_{2}-\frac{1}{30}\zeta_{2}^{2}+\frac{1}{6}\zeta_{3}\right]$$$$

extra dimensions

SM in theTeV brane + Planck brane +bulk. Radion: massive bulk scalar interfering with Higgs **MSSM** cascade from

background processes (piling up)

MK DESY Forum , 25. 03. 2003

HERA is unique in determining pdf's and alphas

confirmed in recent studies by MCooper Sarkar

•is xg negative at small x,Q2?

Q0 defines fwd or bwd extrapolation

FL provides independent measure of xg

access to the longitudinal structure function at low Q2

H1 EPJ C21(01)33

determination of the longitudinal structure function

MK DESY Forum , 25. 03. 2003

parton distribution functions from NLO QCD fits (H1)

CC and NC cross sections are sensitive only to

 $U, \overline{U}, D, \overline{D}$

→new/different QCD fit in which uv, dv, sea are replaced by these observables

light flavours (xg consistent)

possible with H1 data alone with assumption on sea symmetry

 $f_g = (1 + D_g x)$ $f_U = (1 + D_U x + F_U x^3)$ $f_D = (1 + D_D x)$ $f_{\overline{U}} = 1$ $f_{\overline{D}} = 1$

parton distribution functions from NLO QCD fits (ZEUS)

ZEUS hep-ex/0208023 Phys Rev D67(2003)012007

valence quark distributions from QCD fits

measure dv/uv: CC, G2 - but most accurate is ep/en with tagged proton spectator in electron-deuteron scattering at HERA

MK DISO1 Bologna

uncertainty of sea quarks - partonic description of the rise of F2?

shadowing is linked to diffraction \rightarrow new field

•Simulation of ed scattering in H1 (20pb-1)

MK DESY Forum , 25. 03. 2003

- + Low x physics discovered as a new field of theoretical development and experimental fun high density QCD
- + pQCD evolution tested with structure function data from HERA over 4 orders of magnitude in Q2
- + the ultimate precision of data and thy (N3LO) is still to be / is being approached (F2 1%, FL 5%, hiQ2 2% NC, 3% CC, about!)
- + the uncertainty of alphas from DIS/HERA may be halved to +-0.001 (Bethke hep-ex/0211012: 0.1183+-0.0027 NNLO)
- + the gluon determination cannot be completed without FL
- + parton distributions are determined with increasing accuracy from HERA data and are consistent with global fits.
- + the up and down quarks cannot be disentangled at low x and neither at high x without deuterons colliding with e+-

there are 4 experimental challenges to the standard DIS programme at HERA

- high luminosity, i.e. 1000 pb-1
- high precision to better than a %
- lower Ep with substantial luminosity
- Deuterons in HERA

Considering further fundamental opportunities for

- •Precision physics in the transition region
- •eA
- Polarised eN scattering

there is no scientific reason to disrespect HERA