

Cosmic Rays at the Highest Energies

ERRE First Science Results from the Pierre Auger Observatory

Karl-Heinz Kampert (Bergische Universität Wuppertal, Fachbereich Physik)

UHECR – Puzzles and Challenges The Pierre Auger Observatory

- Experimental Approach
- Status
- Performance

First Physics Results

- Energy Spectrum
- Composition and Photon Limits
- Anisotropies & AGN-Correlations

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Ultra High-Energy Cosmic Rays

10²⁰ eV CRs in our Galaxy ?

Lamor radii at **10²⁰ eV** compared to Milky-Way

Interesting new feature: Can do astronomy with cosmic rays !

 $E_{18} \leq Z \cdot B_{\mu G} \cdot R_{kpc}$

Conjecture: Extragalactic origin

? Possible Candidates ?

Karl-Heinz Kampert – University Wuppertal

AGN Jets and Radio-Lobes

Cygnus A (z=0.056, d \approx 210 Mpc 5 GHz image, $\phi \approx$ 20 kpc)

3C 219 (FR II)

100 Mpc = 326 Mio. Lightyears

z=0.1745, d≈800 Mpc

0

Karl-Heinz Kampert – University Wuppertal

Problem: CMBR

978 **WMAP** 2006

Universe is filled with 3K photons: 412/cm³ Discovered 1965 by Penzias and Wilson

Karl-Heinz Kampert – University Wuppertal

The GZK-Effect

Greisen-Zatsepin-Kuz'min 1966

Expected Modulation of CR E-Spectrum

E-spectrum before Auger

Expected E-distribution + HiRes-2 Mono (FD: 0° - 30°) + HiRes-1 Mono (FD: 0° - 15°) + AGASA (SD array)

Science Objectives @ 10²⁰ eV

Fundamental Problem

CRs with energies >10²⁰eV exist Standard astrophysical models cannot account for such energies

If GZK is observed:

- → distance distribution of sources obtained from GZK shape
- → location of sources from direction (New astronomy window to Universe!)

If GZK is not observed:

- new physics to be invoked
 - nearby sources
 e.g. GUT fossils (TD, DM, ...)
 - or Propagation effects e.g. violation of Lorentz invariance, Z-Bursts, ...

New Particle physics:

gravitational radiation from CRs
(Koch, Drescher, Bleicher)
exotic neutrino physics
(Anchordoqui, Sakar, ...)
High density QCD
(Drescher, Dumitru...)

...

Measuring high energy CRs

Rio Negro

Urugua

Lago Nahuel Huapi

Lanin

Pierre Auger Collaboration

OBSERVATORY

369 collaboration members in 63 Institutes from:		
Argentina	Mexico	
Australia	Netherlands	
Bolivia*	Poland	
Brasil	Slovenia	
Czech	Spain	
France U- & FZ-Karlsruhe U-Wuppertal	UK	
	USA	
Italy RWTH-Aachen	Vietnam*	
	*Associated	

Pierre Auger Experiment in Argentina

Hybrid-Concept...

1600 Water Ch-Detect. on 1.5 km triangular grid ⇒ 3000 km² area (optimized to E>10¹⁹ eV)

simultaneously measured with fluorescence light

southern exp. nearly finished northern exp. planned

Pierre Auger Status

Nov. 05, 2007 1501 tanks deployed 1455 with water 1411 with electronics

All 4 fluorescence buildings complete, each with 6 telescopes

Final: 1600 tanks

Karl-Heinz

The Auger Hybrid Observatory

24 fluorescence telescopes...

...1600 Water Cherenkov tanks

Karl-Heinz Kampert – University Wuppertal

Detector Calibration

Ground-Array Throughgoing Muons 3500 3000 2500 2000

Fluorescence Telescopes

SD Event & Reconstruction

FD-Energy Reconstruction

Stereo Hybrid Observations

(θ,φ)=(63.3, 148.9) deg

1st Quadruple Event (21.5.2007)

The Power of Hybrid

	Hybrid	SD-Only	FD-only	
Angular				
Resolution	~ 0.2°	~ 1 - 2 °	~ 3 - 5°	
Aperture	Flat model ind.	Flat model ind.	growing model depend.	
Energy	model ind.	model dep.	model ind.	
The combination is more than C the individuals!				
	the sum c	of Cric		

Energy Spectum

Karl-Heinz Kampert – University Wuppertal

Calibration of SD by FD

Idea:

- 1. Energy equivalent S(1000) is calibrated by hybrid-FD data
- Additional correction applied to dependence on zenith angle, based on real data
- ⇒ That calibration is then used for all SD data

Auger E-Spectrum ($\Theta < 60^\circ$)

Pierre Auger Collab. @ ICRC 2007

Karl-Heinz Kampert – University Wuppertal

Auger Energy Spectrum

Auger Spectrum & Source Distr.

Composition Photons

UHE Photons ? Expected by Top-Down models

e.g.: Super Heavy Dark Matter fit to AGASA

Gelmini, et al, astro-ph/0506128

Upper Limit on Primary Photon Fraction

Astropart. Phys. 27 (2007) 155

UHE-Photon Limits from Ground Array

Karl-Heinz Kampert – University Wuppertal

GZK-effect: Yes UHE Photons: No

Top is DownBottom is Up

Test of Lorentz Invariance Violation

LIV \rightarrow may modify photon dispersion relation

Galaverni & Sigl arXiv:0708.1737

$$\omega^2 = k^2 + m^2 + \xi_n k^2 (k/M_{Pl})^n$$

→ affect the threshold for e⁺e⁻ pair production

Karl-Heinz Kampert – University Wuppertal

Arrival Directions

Karl-Heinz Kampert – University Wuppertal

Anisotropy Searches

Anisotropy Search Method

Véron-Cetty catalog of quasars and AGNs

Take CR source candidates from some catalog, e.g. Veron-Cetty Probability to find a single event of an isotropic distr. within a certain opening angle from a source. $p = p(\psi, n_{sources}) = p(\psi, z_{max})$

Probability that k or more of N isotropic events correlate by chance:

$$P = \sum_{j=k}^{N} \binom{N}{j} p^{j} (1-p)^{N-j}$$

Exploratory Search (1.1.04 - 27.05.06)

Scan

$$P = \sum_{j=k}^{N} \binom{N}{j} p^{j} (1-p)^{N-j}$$

for **3 free parameters**:

 $z_{max} \rightarrow$ no. of sources $\Psi \rightarrow$ allowed angular separation $E_{th} \rightarrow$ threshold Energy

Minimum of P, i.e. largest deviation from isotropy found for $z_{max} = 0.018 (d_{max}=75 \text{ Mpc})$ $\Psi = 3.1^{\circ}$ $E_{th} = 56 \text{ EeV}$

Result: 12 among 15 measured events correlate with at least one source; 3.2 expected if flux was isotropic (p=0.21) and exposure was accounted for

Verify *a posterio* result by applying these correlation parameters to new data instead of using penalty factors to account for *#* of searches

Running Prescription (27.5.06 - ...)

Goal:

confirm results from exploratory scan by new data set (*a priory search*)

Base Hypothesis: Isotropic Flux

Predefined stopping rule:

a) incorrectly reject isotropy hypothesis < 1% (i.e. p<1%)
b) incorrectly accept isotropy hypothesis < 5%

prescription fulfilled on May, 25th 2007

AGN Correlation Plot

In total **27 events** at E > 57 EeV **20 of which correlate** 5.6 expected (p=0.21) Net chance for isotropic distr. **P < 10⁻⁵** Darker colors indicate larger exposure

Interpretation of Correlation Parameters

Effect of Galactic Plane

In total 27 events at E > 57 EeV, 20 of which correlate

5 of the 7 non-correlating events from nearby the galactic plane

likely to happen because of incomplete catalogue and large deflections in magnetic fields

Some Remarks on Correlations

- AGNs may just act as tracer to true CR sources in case the AGNs correlate with them
- Correlations provide independent evidence for GZK-effect
- Spatial correlations surprisingly strong may indicate proton primaries and small intergalactic magnetic fields (but does not agree to Xmax)
- Autocorrelation of event directions provide confirmation
- Likelihood Method worked out for discriminating different source scenarios also at large source densities
- energy opening-angle correlation analysis ...

AGN ≈ Large Scale Structure

7 to 21 Mpc Kravtsov data

Auger is Marching North

Auger North

Need for two sites realized from the early beginning

Southern Site: Mendoza

Hybrid detection & energy calibration
Water Cherenkov surface array

1600 stations, 3000 km²
1.5 km triangular grid

Completion end 2007

Northern Site: Colorado

Retain features & functionality of Southern Site
Hybrid detection & energy calibration
Water Cherenkov surface array
4000 stations, 10,370 km²
Square mile grid

Altitude and latitude are similar

Southern and Northern sites are shown at the same scale

Summary & Outlook

- Auger South will be completed by end of this year
- Highly relevant results obtained already at this stage:
- Ankle & GZK-effect observed
- Top Down & SHDM models largely ruled out by E-spec & photon fraction
- (Best upper limits on EHE neutrinos)
- No CR excess from galactic centre
- Correlations with AGNs established
- ➤ Astronomy of charged particles becomes feasible
- \blacktriangleright Multi-Messenger with γ 's and ν 's next natural step
- ► Need for full sky-coverage

Just opening the window to the high energy Universe!

see www.auger.org for list of authors, auger.uni-wuppertal.de for public event display Contributions by many collaboration members are gratefully acknowledged

Karl-Heinz Kampert – University Wuppertal