k_t - factorization and CCFM: the solution for describing the hadronic final states - everywhere ?

H. Jung, University of Lund

DESY - seminar 22.Oct 2002

where is the problem ?
hadronic final states - jets heav

hadronic final states - jets, heavy quarks - even at Tevatron approximations

doing it better !

CCFM equation in one - loop (DGLAP) and all - loop, solution implementation into new hadron level MC CASCADE

- solve problems, also for heavy quarks and even for Tevatron
- nobody is perfect
- conclusion

The structure function $F_2(x,Q^2)$: DGLAP

Scaling violations perfectly described with DGLAP: $0.63 \cdot 10^{-5} < x < 0.65$ $1 < Q^2 < 25000 \; {\rm GeV}^2$ \bullet adjust input pdf to fit F_2 data **BUT** different sets: MRS, GRV etc use extracted pdf to predict x - sections • even at $p\bar{p}$ **BUT** for reliable predictions at HERA II/III, THERA, LHC etc better understand pdf's

Where is the problem? Forward Jets

Mueller - Navelet jets in DIS: Jet in p - direction with $p_t^2 \sim Q^2$, x_{jet} large, BUT small x_{bj} \checkmark suppress DGLAP evolution allow evolution in x \checkmark standard DGLAP \sim factor 2 too small!

Where is the problem? Charm in DIS

Where is the problem ?

 $b\bar{b}$ in photoproduction and hadroproduction: rightarrow standard DGLAP with NLO calculation rightarrow factor 2 - 4 too small !

Approximation in QCD cascade: Factorization

DGLAP:

collinear singularities

factorized in pdf

• evolution in $Q^2 \sim k^2$, k_t^2 or p_t^2

•
$$\sigma = \sigma_0 \int \frac{dz}{z} C^a(\frac{x}{z}) f_a(z, Q^2)$$

BFKL:

- k_t dependent pdf
- \rightarrow unintegrated pdf
- \bullet evolution in \boldsymbol{x}

•
$$\sigma = \int \frac{dz}{z} d^2 k_t \hat{\sigma}(\frac{x}{z}, k_t) \mathcal{F}(z, k_t)$$

The problem of Asymptotia...

DGLAP is greatat large $Q^2 \rightarrow \infty$ But has problems:>Small x processes:•heavy quarks•particle spectra•jets

BFKL is great at small $x \to 0$ **But has problems:** at finite *x*: NLO corrections predictive power how to simulate?

But asymptotia still far away even for THERA or LHC ...

Attempts to survive in reality

Attempts to survive in reality

hack DGLAP and BFKL prediction ?

hacker: person paid to do hard and uninteresting work ...

Oxford Advanced Dictionary

✓ introduce new concepts: resolved (virtual) photons
 → evolve with DGLAP from proton and photon side
 → similar to pp̄
 → works nicely (→ RAPGAP MC generator)
 BUT theoretical questions: which scale etc ???
 ✓ CCFM - new investigation of color coherence

including color coherence effects in multi-gluon emissions
 angular ordering of emission angles:

ordering in q (DGLAP) implies also angular ordering
 unification of DGLAP and BFKL

Ser WOW

for small z no restriction in q: \blacktriangleleft random walk in q

including color coherence effects in multi-gluon emissions
 angular ordering of emission angles:

ordering in q (DGLAP) implies also angular ordering
 unification of DGLAP and BFKL

WOW for small z no restriction in q:

including color coherence effects in multi-gluon emissions
 angular ordering of emission angles:

ordering in q (DGLAP) implies also angular ordering
 unification of DGLAP and BFKL

CASCADE with CCFM solves the problems

Solve CCFM equation to fit F_2 data from HERA

- obtain CCFM un-integrated gluon
 CASCADE MC implements CCFM:
- predict fwd jet x-section at HERA
- predict charm at HERA
- predict bottom at HERA
- test universality of un-integrated gluon density from HERA
- predict bottom at Tevatron
- w/o additional free parameters

6 7 8 9 1 0

20

D_T

³⁰ 40 50 60 70 ⁿⁱⁿ (GeV/c) **CCFM Monte Carlo - CASCADE**

Why is CASCADE doing well and why did it take so long to develop it ???

CCFM Monte Carlo - CASCADE

Or Why did all the other brave approaches fail ???

Apologies to my friends in Lund ...

CCFM history

1988 - 1990 Formulation of CCFM

1992 SMALLX- MC program

1996 - 1998 Formulation of LDC

1998Had. final states in CCFM

M. Ciafaloni, Nucl. Phys. B 296 (1988) 49 S. Catani, F. Fiorani, G. Marchesini, Phys. Lett B 234 (1990) 339 S. Catani, F. Fiorani, G. Marchesini, Nucl. Phys. B 336 (1990) 18 G. Marchesini, Nucl. Phys. B 445 (1995) 49

G. Marchesini. B. Webber, Nucl. Phys. B 386 (1992) 215

B. Andersson, G. Gustafson, J. Samuelsson, Nucl. Phys. B 467 (1996) 443 B. Andersson, G. Gustafson, H. Kharrazhia, J. Samuelsson, Z. Phys. C 71 (1996) 613 H. Kharrazhia, L.Lönnblad, JHEP 03 (1998) 006

G. Bottazzi, G. Marchesini, G.P. Salam, M. Scorletti, JHEP 9812:011 (1998) **CCFM** history (cont'd)

status in 1999 **CCFM is great !** can describe $\sigma(\gamma^* p)$ (F_2) (hm..., DGLAP does it also...) But fails for hadronic final states: Forward Jets ... **CCFM** history (cont'd)

status in 1999 **CCFM is great !** can describe $\sigma(\gamma^*p)$ (F₂) (hm..., DGLAP does it also...) But fails for hadronic final states: Forward Jets ...

The End of small x ?

CCFM history (cont'd)

status in 1999 **CCFM is great !** can describe $\sigma(\gamma^* p)$ (F₂) (hm..., DGLAP does it also...) But fails for hadronic final states: Forward Jets ...

Much progress since then.... Small x workshops in Lund (thanks to DESY for support) Small x Collaboration

CCFM equation: small and large \boldsymbol{x}

$$\mathcal{A}(x,k_t,\bar{q}) = \mathcal{A}_0(x,k_t)\Delta_s(\bar{q},Q_0) + \int \frac{dz}{z} \int \frac{d^2q}{\pi q^2} \Theta(\bar{q}-zq) \cdot \Delta_s(\bar{q},zq) \tilde{P}(z,q,k_t) \mathcal{A}\left(\frac{x}{z},k_t',q\right)$$

CCFM Splitting fct: $\tilde{P}(z,q,k_t) = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$ Sudakov $\Delta_s(a,b)$:probablility for no radiation in [a,b]

Basic idea - Collinear factorisation

Basic idea - Collinear factorisation

DGLAP unintegrated gluon density - integrated -

one-loop gluon integrated over k_t $\int_0^{\bar{q}} dk_t^2 x \mathcal{A}(x, k_t, \bar{q}) = x G(x, \bar{q})$

compare to evolved DGLAP gluon

one-loop gluon:

- at starting scale use GRV
- test evolution machinery
- full treatment of kinematics
- more than standard DGLAP
- small differences from
 - special form of $\tilde{P} = \bar{\alpha}_s \left(\frac{1}{1-z} + \frac{1}{z} \right)$
- small differences since only gluons

$$F_2(x,Q^2)$$
 and forward jets (in one-loop)

With $\sigma = \int dx_g \sigma(\gamma^* g \to q\bar{q}) \int dk_t^2 \mathcal{A}(x_g, k_t^2, \bar{q})$ fit $F_2(x, Q^2)$

(data from H1 Coll, NPB 470 (1996) 3.) (fitted for $Q^2 > 5 \text{ GeV}^2$, $x < 10^{-2}$)

only 1/z and 1/(1-z) included in P_{gg}

- problem: small x region
- But also off-shell ME helps (with q-ordering and $k_t < p_t$) for rise at small x
- similar findings with standard NLO splitting kernels
- still to small for forward jets... but the same as NLO

Basic idea - k_t factorisation

Basic idea - k_t factorisation

Splitting Function,non-Sudakov and all that...

Splitting Fct:
$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

...contains only singular parts...
non-Sudakov $\log \Delta_{ns} = -\bar{\alpha}_s(k_t^2) \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z'q_t)$

Splitting Function,non-Sudakov and all that...

Splitting Fct:
$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

...contains only singular parts....
non-Sudakov $\log \Delta_{ns} = -\bar{\alpha}_s(k_t^2) \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z'q_t)$

Splitting Function, non-Sudakov and all that...

Splitting Fct:
$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

...contains only singular parts....
pop-Sudakov leg $\Delta_{ns} = -\bar{\alpha}_s(k^2) \int_{-1}^{1} dz' \int_{-1}^{1} dq^2 \Theta(k-q) \Theta(q-q'q)$

non-Sudakov
$$\log \Delta_{ns} = -\bar{\alpha}_s(k_t^2) \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z'q_t)$$

naive solution:

$$\log \Delta_{ns} = -\bar{\alpha}_{s}(k_{t}^{2})\log\left(\frac{1}{z}\right)\log\left(\frac{k_{t}^{2}}{zq^{2}}\right)$$
consistency constraint (CC):
$$k_{t}^{2} > zq^{2}$$

CC removes part of phase space

reason why others failed:

integrals not properly evaluated

Consistency Constraint !!!

terms

Splitting Function,non-Sudakov and all that...

Splitting Fct:
$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

reason why others fail: only 1/z terms non -singular terms

...contains only singular parts....

non-Sudakov $\log \Delta_{ns} = -\bar{\alpha}_s(k_t^2) \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z'q_t)$

solution for CCFM splitting fct:

(Kwiecinski, Martin, Sutton PRD 52 (1995) 1445) $\log \Delta_{ns} = -\bar{\alpha}_{s}(k_{t}) \log \left(\frac{z_{0}}{z}\right) \log \left(\frac{k_{t}^{2}}{z_{0}zq^{2}}\right)$ with $z_{0} = f(z, k_{t}, q)$ valid in full phase space

non - Sudakov depends on non - local (history of cascade): $\mathbf{k}_{ti} = \mathbf{k}_{ti-1} + \mathbf{p}_{ti} = \mathbf{p}_{t1} + \mathbf{p}_{t2} + ... + \mathbf{p}_{ti}$

Non-Sudakov and all - loop resummation

Splitting Fct:
$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

Non - Sudakov form factor > all loop resummation:
 $\Delta_{ns} = \exp\left[-\bar{\alpha}_s(k_t^2) \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t-q) \Theta(q-z'q_t)\right]$
 $\Delta_{ns} = 1 + \left(-\bar{\alpha}_s(k_t^2) \int \frac{dz'}{z'} \int \frac{dq^2}{q^2}\right)^1 + \frac{1}{2!} \left(-\bar{\alpha}_s(k_t^2) \int \frac{dz'}{z'} \int \frac{dq^2}{q^2}\right)^2 \dots$

Structure Function $F_2(x,Q^2)$

together with G.P. Salam, EPJC 19, 351 (2001)

With $\sigma = \int dk_t^2 dx_g \mathcal{A}(x_g, k_t^2, \bar{q}) \sigma(\gamma^* g^* \to q\bar{q})$ fit $F_2(x, Q^2)$

(data from H1 Coll, NPB 470 (1996) 3.)

Parameters in fit (fitted for $Q^2 > 5 \text{ GeV}^2$, $x < 10^{-2}$)

- Collinear cut-off $Q_0 = 1.4$ GeV
- initial gluon $x\mathcal{A}_0(x, k_{t0}^2)$
- freezing of $\alpha_s(k_t)$ for $k_t \to 0$ k_t not constrained ...
- Iight quark masses: $m_q = 0.140$ GeV, $m_c = 1.5$ GeV

unintegrated gluon density $x\mathcal{A}(x,k_t^2,\bar{q})$ obtained from fit to F_2

Unintegrated gluon density

CCFM unintegrated gluon density - integrated -

CCFM gluon integrated over k_t $\int_0^{\bar{q}} dk_t^2 x \mathcal{A}(x, k_t, \bar{q}) = x G(x, \bar{q})$ > compare to DGLAP gluon

CCFM gluon:

- at starting scale q = 1 GeV
 flat !!!
- small x rise of gluon only for DGLAP needed
- in CCFM small x rise generated perturbatively

Remember: gluon density is no observable, only cross sections

The Monte Carlo Generator CASCADE

Implement CCFM backward evolution into NEW MC generator CASCADE (http://www.quark.lu.se/hannes/cascade)
 hard scattering processes included:

 γg → qq̄, γ*g* → QQ̄, γg* → J/ψg* for *ep* scattering
 *g*g* → qq̄, g*g* → QQ̄* for *pp̄* scattering
 initial state parton cascade acc. to CCFM with angular ordering P-remnant treatment like in PYTHIA (*q*-di-*q*, primordial *k_t*)

 final state parton showers added to quarks, hadronization via JETSET/PYTHIA

CASCADE **is MC implementation of CCFM** for ep and also for $p\bar{p}$

Backward evolution of initial state radiation

forward - backward evolution comparison **Never** shown for DGLAP type MC's!!!

Solution to the problem: Forward Jets

require jets with $p_t > 3.5(5.0)$ GeV and $0.5 < E_t^2/Q^2 < 2$

(H1 Coll. NPB 538 (1999) 3)

- CASCADE well in shape and normalization
- RAPGAP off as expected from DGLAP type evolution

Solution to the problem: charm in DIS

 \bullet CASCADE \sim perfect even at low x and Q^2

 \bullet free parameter: m_c

$b\bar{b}$ production at HERA: H1 and ZEUS

H1 (H1 Coll. *PLB* 467 (1999) 156) $Q^2 < 1 \text{ GeV}^2, 0.1 < y < 0.8,$ $p_t^{\mu} > 2 \text{ GeV}, 35^o < \theta^{\mu} < 130^o$ visible x-section $ep \rightarrow b\bar{b}X \rightarrow \mu X$: $\sigma_{vis} = 176 \pm 16(stat.)^{+26}_{-17}(syst.)$ pb NLO: $\sigma = 54 \pm 9$ pb CASCADE $\sigma(ep \rightarrow e'b\bar{b}X \rightarrow \mu X) = 65$ pb $R_{MC}(\text{H1}) = \frac{\sigma_{data}}{\sigma_{MC}} = 2.7 \pm 0.25^{+0.4}_{-0.26}$

ZEUS (ZEUS Coll. EPJC (2001)) $Q^2 < 1 \text{ GeV}^2, 0.2 < y < 0.8,$ $p_t^b > 5 \text{ GeV}, |\eta^b| < 2$ $\sigma = 1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.)^{+0.2}_{-0.4} (ext.)$ nb **NLO:** $\sigma = 0.64^{+0.15}_{-0.1}$ nb CASCADE $\sigma(ep \rightarrow e'b\bar{b}X) = 0.88 \pm 0.08$ nb R_{MC} (**ZEUS**) $= \frac{\sigma_{data}}{\sigma_{MC}} = 1.25 \pm 0.32^{+0.21}_{-0.37}$

Measurements rely on large extrapolation from visible to total x-section difference in visible x-sections

Solution to the problem at HERA: $b\overline{b}$

ZEUS (ICHEP (2002) Abstract 785) $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.8, two jets + muon with $p^{\mu} > 3 \text{ GeV}$, $-1.75 < \eta^{\mu} < 2.3$ ZEUS: $\sigma(e^+p \rightarrow b\bar{b} \rightarrow dijets + X) = 733 \pm 61 \pm 104 \text{ pb}$ CASCADE: $\sigma(e^+p \rightarrow b\bar{b} \rightarrow dijets + X) = 533 \text{ pb}$ NLO: $\sigma = 381 \text{ pb}$

Solution to the problem: bb production at Tevatron

- use unintegrated gluon as before (from F_2 fit at HERA)
- use of shell matrix element for $g^*g^* \rightarrow bb$ with $m_b = 4.75$ GeV.

NOTE NLO off by factor 2

Solution to the problem: $b\bar{b}$ production at Tevatron

• CASCADE describes μ spectrum over huge range well • NLO fails by factor \sim 2 (central) and \sim 4 (forward)

Why does k_t -factorization help for $b\bar{b}$ production at Tevatron

estimate higher order corrections Nr of gluons with $p_t > p_t^{b\bar{b}}$ LO: $\mathcal{O}(\alpha_s^2) \to N_g = 0$ NLO: $\mathcal{O}(\alpha_s^3) \to N_g = 1$ NNLO: $\mathcal{O}(\alpha_s^4) \to N_g = 2$

 $\mathsf{CASCADE} \to \mathcal{O}(\alpha_s^6)$

CASCADE with k_t factorization for estimation of higher order corrections

Nobody is perfect ...

- fwd π's and fwd jets with k_t algo are less well described
 only gluons included, need to worry about quarks also ?
- bottom production at HERA: what about difference between H1 and ZEUS ?
 reed to care about fragmentation issues ?
- jets in DIS and charm
 - x-section seems to be at high end....
 - think about fine tuning and re-fitting of CCFM unintegrated gluon ?

Improve CCFM splitting function P_{qq} to be valid for all z

BUT also:

- 🖛 non-singular terms
 - \blacksquare scale q_t^2 in α_s also for small z part
- CCFM unintegrated gluon density also for diffraction at HERA
 better suited because of angular ordering rapidity gap angle
 1st attempts look promising
- **unintegrated gluon density for photon** (M. Hansson (Lund) started ...) **solve also** $b\bar{b}$ in $\gamma\gamma$???

What has been achieved ???

- important to go beyond DGLAP: treat kinematics properly.....
- In the full machinery for MC evolution developed: suitable for DGLAP - reproduces standard evolution reliable for small x evolution with k_t factorization and CCFM
- MC solution of CCFM evolution equation obtained
- full hadron level CCFM MC generator developed: CASCADE
- resolves nearly all discrepancies with data at s mall x forward jets heavy quarks: charm (open charm and J/ψ) and bottom
- **•** solves $b\bar{b}$ crisis at Tevatron with unintegrated gluon from HERA

The Beginning, Not the End

- k_t factorization has reached new phase
 - precision tests
 - fine tuning possible and necessary
- k_t factorization is now at comparable level with DGLAP
- many new items are opened up:
 more studies with high statistics at HERA II
 more studies in small angle region at HERA III
 γγ physics at TESLA
 new perspectives for THERA
- new theoretical interest in k_t factorization generated:
 - Lund small x workshops
 - Small x collaboration

The Beginning, Not the End

Even if there is still a bit to go for a $T_{herr} O_{f} E_{verything}$ we are facing the beginning of an interesting, bright and challenging future in small x physics

Problems in small x evolution: scale of α_s

together with G.P. Salam

Splitting Fct:

$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(k_t)}{z} \Delta_{ns}(z,q,k_t)$$

$$\log \Delta_{ns} = -\bar{\alpha}_s(k_t^2)$$

$$\int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z'q_t)$$
Splitting Fct:

$$\tilde{P} = \frac{\bar{\alpha}_s(q(1-z))}{1-z} + \frac{\bar{\alpha}_s(q)}{z} \Delta_{ns}(z,q,k_t)$$

$$\log \Delta_{ns} = -\int_0^1 \frac{dz'}{z'}$$

$$\int \frac{dq^2}{q^2} \alpha_s(q) \Theta(k_t - q) \Theta(q - z'q_t)$$

$$\log \Delta_{ns} = \cdots \int_{(z'q_t)^2}^{k_t^2} \frac{dq^2}{q^2} \frac{1}{\log(q/\Lambda_Q CD)}$$

worry: lower limit $z'q_t \ll \Lambda_{QCD}$: introduce cutoff q_0 .

Problems in small x **evolution**

CCFM including full splitting fucntion

together with G.P. Salam

 improve splitting function $P_{gg} \sim \bar{\alpha}_{\rm s} \left(\frac{1}{z} \Delta_{ns} + \frac{1}{1-z} \right)$ to include non-singular terms $P_{gg} \sim \bar{\alpha}_{\rm s} \left(\frac{1}{z} \Delta_{ns} - 2 + z(1-z) + \frac{1}{1-z} \right)$ • new attempt (G. Salam): $P = \bar{\alpha}_{\rm s} \left(\frac{(1-z)}{z} + (1-B)z(1-z) \right) \Delta_{ns}$ $+\bar{\alpha}_{\rm s}\left(\frac{z}{1-z}+Bz(1-z)\right)$ • need also new Sudakov: $\log \Delta_s = -\int_0^1 \frac{dq'^2}{q'^2} dz' \bar{\alpha}_s \left(\frac{z'}{1-z'} + \frac{z(1-z)}{2} \right)$ and new non-Sudakov

$$\log \Delta_{ns} = -\bar{\alpha}_{s}(k) \int \int dz' \frac{dq'^{2}}{q'^{2}} \left(\frac{1-z}{z'} + (1-B)z(1-z) \right)$$

Forward or backward evolution where is the problem ?

SMALLX Monte Carlo:

- forward evolution used to solve CCFM equation
- obtain unintegrated gluon density
- produces also partons
- weighted events produced
- large fluctuations
- difficult to extend to $par{p}$

Better

backward evolution

- starting from hard scattering
- use unintegrated gluon density
- parton and hadron level
- very efficient
- unweighted events
- \sim easy to extend to $p\bar{p}$

... Only need to formulate backward evolution for CCFM ...

CCFM backward evolution

together with G.P. Salam, EPJC 19, 351 (2001)

The CCFM Backward Evolution

starting with quark - box: $\sigma(\gamma^* g^* \to q\bar{q})$ select x_n, k_{tn} from $\mathcal{A}(x, k_t, \bar{q})$ with \bar{q} given by quark box: $\bar{q} \sim \sqrt{\hat{s} + Q_t^2}$

select z_n from $\tilde{P} = \frac{\bar{\alpha}_s(q_n(1-z_n))}{1-z_n} + \frac{\bar{\alpha}_s(k_{tn})}{z_n} \Delta_{ns}(z_n, k_{tn}, q_n)$ with k_{tn}, q_n already known calculate x_{n-1} , and finally $p_{tn} = q_n \cdot (1-z_n)$ and k_{tn-1}

The CCFM Backward Evolution (cont'd)

Parton dynamics at small x: Forward Jets I

Parton dynamics at small x: Forward π^0 I

$b\bar{b}$ production in DIS at HERA: H1 and ZEUS

H1(prel.)

 $2 < Q^{2} < 100 \text{ GeV}^{2}, 0.1 < y < 0.8,$ $p_{t}^{\mu} > 2 \text{ GeV}, 35^{\circ} < \theta^{\mu} < 130^{\circ}$ visible x-section $ep \rightarrow e'b\bar{b}X \rightarrow \mu X$: $\sigma = 39 \pm 8(stat.) \pm 10(syst.) \text{ pb}$ NLO: $\sigma = 11 \pm 2 \text{ pb}$ CASCADE $\sigma(ep \rightarrow e'b\bar{b}X) = 15 \text{ pb}$ $R_{MC}(\text{H1}) = \frac{\sigma_{m}easured}{\sigma_{MC}} = 2.6$

ZEUS(prel.) ICHEP 2002 $Q^2 > 2 \text{ GeV}^2, 0.05 < y < 0.7,$ $E_{T,jet}^{Preit} > 6 \text{ GeV}, -2 < \eta_{jet}^{lab} < 2.5$ $p^{\mu} > 2 \text{ GeV}, 30^o < \theta^{\mu} < 160^o$ **x-section** $ep \to e'b\bar{b}X \to e'jet\mu X$: $\sigma = 38.7 \pm 7.7(stat.)_{5.0}^{6.1}(syst.) \text{ pb}$ **NLO:** $\sigma = 28.1 \pm 2 \text{ pb}$ CASCADE $\sigma(ep \to e'b\bar{b}X) = 35 \text{ pb}$ $R_{MC}(\text{ZEUS}) = \frac{\sigma_{measured}}{\sigma_{MC}} = 1.1$

$b\overline{b}$ production in DIS at HERA: ZEUS

Resolved - γ , NLO and k_t - factorization

k_t - and collinear factorization

factorize k_t dependence in \mathcal{F} and insert in σ

improved coefficient and splitting functions to all order