Search for the Higgs Boson at Hadron Colliders

• Introduction

- Search for the Higgs Boson at the LHC
 - Overview on standard channels
 - Potential in vector boson fusion channels
 - Measurement of Higgs boson parameters (mass, couplings, spin, self-coupling)
- What can be done at the TeVatron?
- Present status at Fermilab

Karl Jakobs Institut für Physik Universität Mainz 55099 Mainz

The Higgs Mechanism

- Essential ingredient of the Standard Model: complex scalar field with potential $\mathcal{U}(\phi) = \mu^2(\phi^*\phi) + \lambda(\phi^*\phi)^2$
- Used to break the el.weak symmetry.....

$$M_{W^{\pm}} = \frac{1}{2}vg$$
 $M_Z = \frac{1}{2}vg/\cos\theta_W = M_W/\cos\theta_W$

..... and to generate fermion masses:

$$m_f = g_f v / \sqrt{2} \qquad \Rightarrow g_f = m_f \sqrt{2} v$$

• Search for the associated Higgs Boson is a key issue for experiments at future colliders

Experimental steps:

- 1. Higgs boson discovery
- 2. Measurement of Higgs boson parameters (couplings to bosons and fermions)
- 3. Measurment of the Higgs self coupling
 - \Rightarrow Higgs potential

Constraints on the Higgs boson mass:

1. Direct searches at LEP:

2. Indirect mass limits from el.weak precision data (LEP + Tevatron):

3. Upper mass limit form unitarity bound in WW scattering:

$$M_{\rm H}$$
 < ~ 1 TeV/c²

Higgs production in Hadron Colliders

Higgs decay branching ratios:

- Lepton or photon decay modes are essential, due to large hadronic background from QCD jet production
- bb decay mode only accessible in associated production

Leading order production cross sections

Status of higher order corrections:

NLO corrections (K-factors) have meanwhile been calculated for all Higgs production processes (huge theoretical effort !)

1. gg fusion:

• large NLO QCD corrections

K ~ 1.7 - 2.0

[Djouadi, Spira, Zerwas (91)] [Dawson (91)]

• complete NNLO calculation \Rightarrow evidence for nicely converging pQCD series

[Harlander, Kilgore (02)] [Anastasiou, Melnikov (02)]

2. ttH associated production:

full NLO calculation

LHC: K ~ 1.2 Tevatron: K ~ 0.8

 scale uncertainty drastically reduced [Beenakker, Dittmaier, Krämer, Plümper, [Dawson, Reina (01)] Spira, Zerwas (01)]

3. Weak boson fusion:

[Han, Valencia, Willenbrock (92)] [Spira (98)]

4.WH associated production:

(QCD corrections from Drell-Yan process)

K ~ 13

K ~1.1

The Large Hadron Collider (LHC)

Superconducting proton proton accelerator in the LEP tunnel
 p P
 U p

7000 GeV

7000 GeV

• planned experiments: ATLAS, CMS (pp-physics) LHC-B, ALICE (b-physics, heavy ions)

<u>Revised Time Schedule:</u>

Dec. 2006 Jan Mar. 2007	Ring closed and cold Machine commissioning
Spring 2007	$\begin{array}{l} \mbox{First collisions} \ , \ pilot \ run \\ \mbox{L=5x10^{32} to } 2x10^{33} \ cm^{-2} \ sec^{-1}, \ \leq 1 \ fb^{-1} \\ \mbox{Start detector commissioning} \\ \ \sim \ 10^5 \ Z \rightarrow \ell \ell, \ W \rightarrow \ell \nu, \ tt \ events \end{array}$
June - Dec. 2007	Complete detector commissioning, Physics run
→ 2009	L=1-2 x10 ³⁴ , 100 fb ⁻¹ per year (high luminosity LHC)

Experimental conditions

$L = 1.0 \ 10^{34} \ cm^{-2} \ sec^{-1}$

- interaction rate of 40 MHz (separation between bunch crossings of 25 ns)
- 23 inelastic pp-collisions per bunch crossing
 - **Φ** ~500 charged particles in the interval $|\eta| < 2.0$ (15⁰ < θ < 165⁰)
- superposition of several collisions during the sensitive time of the detectors
 - \Rightarrow fast detectors, rad. hard detectors and electronics
 - \Rightarrow on-line signal processing, filtering

Detector Requirements

- Good measurement of leptons and photons
- Good measurement of missing transverse energy (E_T^{miss}) and

Jet energy measurements and jet-tagging in forward region \Rightarrow calorimeter coverage down to $\eta \sim 5$

 Efficient b-tagging and τ identification (silicon strip and pixel detectors)

Detector construction

CMS HCAL assembly

ATLAS superconducting solenoid

Main search channels at the LHC

10 fb⁻¹: Discovery possible over the full mass range, however, needs combination of ATLAS + CMS

$$M_{\rm H} = 115 \, {\rm GeV}$$
: S/ $\ddot{\mathbf{O}}\mathbf{B} = 4.7$

Signal / background ~ 4% background (dominated by $\gamma\gamma$ events) can be determined from side bands

important: $\gamma\gamma$ -mass resolution in the calorimeters, γ / jet separation

<u>Gluon fusion</u>: $H \rightarrow ZZ \rightarrow l^+l^- l^+l^-$

ATLAS, 30 fb⁻¹

important: b-jet rejection $(b \rightarrow l)$, \Rightarrow Zbb and tt-background

$t\bar{t} H \rightarrow t\bar{t} b\bar{b}$

•Main backgrounds:

-- combinatorial from signal (4b in final state)

-- Wjjjjjj, WWbbjj, etc.

-- ttjj (dominant, non-resonant)

- b-tagging performance is crucial ATLAS results for 2D-b-tag from full simulation (ε_b =60% R_i (uds)~ 100 at low L)
- Shape of background must be known;
 60% (from ttbb) can be measured from ttjj using anti-b tag
- LHC experiments need a better understanding of the signal and the backgrounds (K-factors for backgrounds)

Higgs production via Vector Boson Fusion

Motivation:

- Increase discovery potential at low mass
- Improve measurement of Higgs boson parameters (couplings to bosons, fermions (taus))

proposed by D.Rainwater and D.Zeppenfeld et al.: (hep-ph/9712271, hep-ph/9808468 and hep-ph/9906218)

Destinctive Signature of:

- two high P_T forward jets
- little jet activity in the central region
 Det Veto

- **Þ** <u>Experimental Issues:</u>
 - Forward jet reconstruction
 - Jets from pile-up in the central/forward region

<u>Channels studied:</u> qqH ® qqWW* ® qq l n l n qqH ® qq t t ® qq l n n l n ® qq l nn had n

Forward tag Jets

Rapidity distribution of tag jets VBF Higgs events vs. tt-background

Forward tag jet reconstruction has been studied in full simulation in ATLAS

kin. eff. for tag jets = 51.9% ($P_T > 40/20 \text{ GeV}, \Delta \eta > 3.6$)

tag eff. per jet: around 75%

Rapidity separation

<u>QCD backgrounds:</u> tt production Z + 2 jets (PYTHIA MC)

el.weak background: WW jj production Z + 2 jets (matrix elements interfaced to PYTHIA)

® qqWW* ® qqlnln

Background rejection: qqH

- Lepton P_T cuts and tag jet requirements $(\Delta \eta, P_T)$
- Require large mass of tag jet system, tau rejection
- Jet veto
- Lepton angular and mass cuts

Combined significance of VBF channels for 10 fb⁻¹

- VBF channels (in particular WW*) are discovery channels at low luminosity
- For 10 fb⁻¹ in ATLAS:

5 s significance for 120 £ m_H £ 190 GeV

ATLAS Higgs discovery potential for 30 fb⁻¹

- Vector boson fusion channels improve the sensitivity significantly in the low mass region
- Several channels available over the full mass range

LHC discovery potential for MSSM Higgs bosons

Assuming decays to SM particles only

 5σ contours

particles neglected.

- Plane fully covered (no holes) at low L (30 fb⁻¹)
- Main channels: $h \rightarrow gg$, $b\overline{b}$, $A/H \rightarrow mm$, tt, $H^{\pm} \rightarrow tn$
- Region at large m_{A} and moderate tan β only covered by h; difficult to detect other Higgs bosons Possible coverage :* via SUSY decays (model dependent, under study) luminosity (only moderate improvement)

Higgs decays via SUSY particles

If SUSY exists : search for H/A $\rightarrow \chi^0_2 \chi^0_2 \rightarrow \ell \ell \chi^0_1 \ell \ell \chi^0_1$

Exclusions depend on MSSM parameters (slepton masses, μ)

MSSM discovery potential for Super-LHC

ATLAS + CMS, 2 x 3000 fb⁻¹

- Situation can be improved, in particular for $m_A < ~400 \text{ GeV}$
- But: (S)LHC can not promise a complete observation of the heavy part of the MSSM Higgs spectrum

.... although the observation of sparticles will clearly indicate that additional Higgs bosons should exist.

Invisible Higgs decays ?

Preliminary ATLAS study:

search for invisibly decaying Higgs boson in VBF mode (based on study by O.Eboli and D.Zeppenfeld, Phys.Lett.B495 (2000))

Event selection: 2 tag jets, $(P_T, \Delta \eta, M_{jj}>1200 \text{ GeV})$ $P_T^{miss} > 100 \text{ GeV}$ Lepton and Jet veto (no jets with $P_T> 20 \text{ GeV}$)

Requires special forward jet + P_T^{miss} trigger (preliminary studies \Rightarrow seems feasible)

Discriminating variable: $\Delta \phi_{ii}$ (separation between tag jets)

expect differences due to HIggs coupling structure:

background normalization via W $\rightarrow \ell v$ and Z $\rightarrow \ell \ell$ in region $\Delta \phi > 1$ needed, to constrain the background (estimated background uncertainty: 4-5%)

Sensitivity:

- Needs confirmation from more detailed simulation (trigger)
- Non-Standard Model background ??
- Needs confirmation in ttH and/or WH channel to demonstrate presence of a Higgs boson

Determination of Higgs Boson Parameters

- 1. Mass
- 2. Couplings to bosons and fermions (impact of vector boson fusion channels)
- 3. Spin
- 4. Higgs self coupling

Measurement of the Higgs boson mass

Note: present theoretical error $\Delta m_h \sim 3 \text{ GeV}$

Measurements of Higgs boson couplings

i) Ratio between W and Z partial widths

• Direct measurements

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

VBF: measurement can be extended to low masses

• Indirect measurements (via H ® gg)

ii) Ratio of boson to fermion couplings

Direct measurement

VBF: $-\frac{\sigma \times \mathsf{BR}(\mathsf{qq} \to \mathsf{qqH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{qq} \to \mathsf{qqH}(\mathsf{H} \to \tau\tau))} = \frac{\Gamma_W \Gamma_W}{\Gamma_W \Gamma_\tau} = \frac{\Gamma_W}{\Gamma_\tau}$

Indirect measurement

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \gamma \gamma))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \gamma \gamma)} = \frac{\Gamma_W \Gamma_\gamma}{\Gamma_g \Gamma_\gamma} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)} = \frac{\Gamma_W \Gamma_W}{\Gamma_g \Gamma_W} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

$$- \frac{\sigma \times BR(ttH(H \rightarrow bb))}{\sigma \times BR(ttH(H \rightarrow \gamma\gamma))} = \frac{\Gamma_t \Gamma_b}{\Gamma_t \Gamma_\gamma} \sim \frac{\Gamma_b}{\Gamma_W}$$

 Uncertainties on the ratio arising through different production processes are not included

additional channels: tt H , $H \rightarrow WW^*$ (under study) qqH, $H \rightarrow bb$ (??)

both would add to the measurement of $\Gamma_{\rm b}$ / $\Gamma_{\rm W}$

Higgs boson spin?

Angular distributions in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow 4 \ell$ are sensitive to spin and CP eigenvalue

- azimuthal angle φ, defined as angle between the decay planes of the two Z-bosons in the restframe of the Higgs
- polar angle θ, defined as angle of neg. charged lepton in the restframe of the Z to the direction of motion of the Z in the restframe of the Higgs

(J.R. Dell'Aquila, C.A. Nelson)

expected results:

- Method will be applied in low mass region (ZZ*) (C.P. Buscello, J.v.d. Bij)
- Additional channles will be studied

Higgs boson self coupling ?

to establish the Higgs mechanism the Higgs boson self-coupling has to be measured:

small signal cross sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,... ⇒ no significant measurement possible at the LHC

need Super LHC $L = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}$, 6000 fb⁻¹

Most sensitive channel:

gg ® HH ® WW WW ® ln jj ln jj

- accessible in mass range 160 GeV 200 GeV
- bb-decay mode at lower masses is hopeless

Selection:

- 2 isolated, high P_T , like sign leptons (from different Higgs bosons)
- 4 high P_{T} jets, compatible with W-mass

m_H	Signal	$t\bar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
200 GeV	220	90	60	1500	1600	30	3.8

 $\Delta \lambda_{\text{HHH}} / \lambda_{\text{HHH}} = 19 \% \text{ (stat.)} \text{ (for } m_{\text{H}} = 170 \text{ GeV} \text{)}$ $\Delta \lambda_{\text{HHH}} / \lambda_{\text{HHH}} = 25 \% \text{ (stat.)}$ (for m_H = 200 GeV)

The Search for the

Higgs Boson

at Fermilab

The Tevatron collider at Fermilab

Proton-antiproton collider

*1992 - 1996: Run I, 2 experi	ments	
CDF und D0, Ö s	= 1800 GeV ò L dt	= 125 pb ⁻¹
*1996 - 2001: Upgrade progra	mme	
(maschine und d	letectors)	
* since March 2001: Run II a,	Ö s = 1960 GeV,	2 fb ⁻¹
* 2005 - LHC : Run II b,	Ö s = 1960 GeV,	10-20 fb ⁻¹

0.8 \circledast 5.0 10³² cm⁻² s⁻¹

DØ Detector

Fiber Tracker

Silicon Detector

The work of many people.....

German participation: Aachen, Bonn, Mainz, LMU München, Wuppertal

Search channels at the Tevatron

important decays: WH, ZH, WW(hopeless: $H \rightarrow \gamma \gamma$, 4 ℓ	*) (rate limited)
σ BR (H \rightarrow ZZ \rightarrow 4l) = 0.07 fb	(MH=150 GeV)
<u>Mass range 110 - 130 GeV:</u>	LHC
*WH ® Inn bb	(╯) weak
∗ZH ℝ I+I⁻ bb	weak
∗ZH ® mn bb	Æ (trigger)
* ZH ® bb bb	Æ (trigger)
∗ttH ® Innbjjbbb	✓
Mass range 150 - 180 GeV:	LHC
* H ® WW ^(*) ® in in	✓

- * WH ® WWW^(*) ® **in in in**
- ∗ WH ® WWW^(*) ® l+**n** l+n jj

Triggering is easier at the Tevatron:

- better P_T^{miss} -resolution
- track trigger at level-1 (big challenge)

Background:

electroweak produ	uction:
QCD production	(e.g, tt)

~10 x larger at the LHC ~ 100 x larger at the LHC

Detector acceptance:

larger at Fermilab (central production) Signal and background ratios after detector acceptance:

	$\begin{array}{l} WH \rightarrow \ell \nu \ b\overline{b} \\ ZH \rightarrow \ell \ell \ b\overline{b} \end{array}$	$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ (M _H = 160 GeV)
S (14 TeV) / S (2 TeV) B (14 TeV) / B (2 TeV) S/B (14 TeV) / S/B (2 TeV) S/ \sqrt{B} (14 TeV) / S/ \sqrt{B} (2 TeV)	≈ 5 ≈ 25 ≈ 0.2 ≈ 1	≈ 30 ≈ 6 ≈ 5 ≈ 10

-- comparable discovery potential for WH and ZH:

- larger signal at the LHC
- better S/B-ratio at theTevatron
- difficult at both colliders

-- significantly better LHC potential for $H \to WW^{(*)} \to \ell \nu \ell \nu$

 $M_{\rm H} = 120 \text{ GeV}, \ 30 \text{ fb}^{-1}$

Tevatron discovery potential for a light Higgs

combination of both experiments and all channels

(discovery in a single channel not possible)

For 10 fb⁻¹ :

- (i) 95% CL exclusion of a SM Higgs boson is possible over the full mass range ($M_{\rm H}$ < 185 GeV)
- (ii) 3-s evidence for $M_H < 130$ GeV and

 $155 \text{ GeV} < M_{H} < 175 \text{ GeV}$

For 30 fb⁻¹ (optimistic) :

(i) 3-s evidence for the SM Higgs boson is possible over the full mass range (M_H < 185 GeV)

Status of the CDF/D0 data taking

- Detector commissioning essentially completed
- Luminosity much lower than expected, but steadily improving
- present luminosity: 3.6 10 ³¹ cm⁻² sec⁻¹
- int. luminosity until 1. October: ~ 35 pb⁻¹ per exp. for physics analysis

First Signals from B-physics in D0

B lifetime measurement from inclusive J/w

• Measured lifetime consistent with the world average

Exclusive B reconstruction

- **B**[±]**® J**/**y K**[±]
- First time in DØ
- Expect more soon!

First W and Z signals in Run II

Luminosity ~ 7.5 pb^{-1}

No. of W \rightarrow ev: 3493 \pm 75 \pm 296 No. of Z \rightarrow ee: 186 \pm 14 \pm 1

Background for H ® WW ® enen

- No sensitivity yet for SH Higgs **Þ** first look at backgrounds
- However, enhanced rates in Exotic Higgs Models:
 - 4th SM family enhance Higgs cross sections by a factor of ~8.5 for Higgs mass between 100-200 GeV
 - Fermiophobic/Topcolor Higgs: BR (H ® VV) >98% for $m_{\rm H} \ge 100 \text{ GeV}$

Search for ee + P_T^{miss} events

luminosity 8.8 pb⁻¹

Data are consistent with background expectations

Azimuthal opening angle between the leptons

The question of the existence of the Higgs boson can be answered at the LHC

- Discovery over the full mass range possible (SM, MSSM)
- First parameter measurements can be performed (for precise measurements: → Tesla)

Also the Tevatron experiments have a discovery potential in the intermediate mass range

- 95% CL exclusion over mass range m_H < 185 GeV possible with 10 fb⁻¹ per experiment
- badly needed: luminosity

Hadron colliders offer interesting physics potential over the next ~ 10 years....

- also beyond the Higgs sector -