Experimental aspects of Vector Meson production at HERA

Giuseppe Iacobucci INFN-Bologna

DESY Forum, February 12, 2002

Focus on a few interesting aspects of elastic and proton dissociative VM production:
W dependence (pQCD vs. Regge); trajectories
hard scales: Q², |t|, M_{VM}², and their combination
VM ratios: SU(4) vs. pQCD expectations

Vector Mesons production at HERA

Experimentally: very clean processes in wide kinematic range

Q ²	γ* virtuality	$0 < Q^2 < 100 \text{ GeV}^2$
$W_{\gamma p}$	c.m. energy of $\gamma^* p$ system	$20 < W_{\gamma p} < 290 \text{ GeV}$
t	4-mom. transfer squared at p-vertex	$0 < t < 20 \text{ GeV}^2$
VM	Vector Meson	ρ ⁰ , ω, φ, J /ψ, ψ', Υ

HERA \Rightarrow simultaneous control of different quantities: Q², t, M²_{VM}

Models for Elastic VM production

 $\int_{\gamma \to V}^{2} f^{\gamma \to V}$ Elastic Photoproduction (Q^2 , t ~ 0) of light Vector Mesons (VM) is a soft process. No hard scale \Rightarrow Vector Dominance Model × Regge theory: γ^* fluctuates into VM <u>before</u> the interaction р $\Rightarrow \sigma_{\gamma p \to Vp} = f_{\gamma \to V}^2 \otimes \sigma_{Vp \to Vp}$ $\sigma_{Vp \rightarrow Vp}$: exchange of soft-Pomeron trajectory, in linear approximation: $\alpha_{\mathsf{P}}(t) = \alpha_{\mathsf{P}}(0) + \alpha'_{\mathsf{P}} \cdot t$

$$\Rightarrow d\sigma_{el}/dt = e^{-b_0 t} \cdot W^{4(\alpha_{\mathbf{P}}(t) - 1)} = e^{-b(W)t} \cdot W^{4(\alpha_{\mathbf{P}}(0) - 1)}$$

where: $b = b(W) = b_0 + 4 \cdot \alpha'_{\mathbf{P}} \cdot ln(W)$

Experimentally, from hadronic collisions:

 $\Box \alpha_{\mathsf{P}}(\mathbf{0}) = \mathbf{1.08} \Rightarrow \mathbf{slow \ rise \ of \ } \sigma_{\mathsf{el}} \propto \frac{W^{4(\alpha_{\mathsf{P}}(0)-1)}}{h(W)} \approx \frac{W^{0.32}}{h(W)} = W^{0.22}$

 $\Box \alpha'_{P} = 0.25 \Rightarrow$ b slope increasing with W ("shrinkage")

 (ρ^0, ω, ϕ)

p'

Elastic ρ^0 photoproduction: soft process

Models for Hard VM production

A hard scale is often present at HERA \Rightarrow perturbative QCD applicable <u>In target frame</u>, VM production is a 3-step process:

- 1. $\gamma^* \rightarrow q\bar{q}$ fluctuation
- 2. qq̄ scatters off the proton by a colour-singlet exchange (two gluons at lowest order)
- 3. VM is formed (well after the interaction)

If dipole size: $\mathbf{r} = \frac{1}{\sqrt{\mathbf{z}(1-\mathbf{z})\mathbf{Q}^2 + \mathbf{m}_q^2}}$ is small

(when m_q is large or there is a γ^*_L at high Q^2)

 \Rightarrow qq pair resolves gluons \Rightarrow **pQCD is applicable**

Elastic VM at large Q²: pQCD predictions

Model by Brodsky et al. for <u>longitudinal photons:</u>

1. Fast rise with energy:

gluon from F₂ scaling violation

$$\mathbf{\sigma}_{\gamma^* \mathbf{p} \to \mathbf{V} \mathbf{p}}^{\mathbf{L}} \propto \frac{1}{\mathbf{Q}_6^6} \cdot \mathbf{\alpha}_s^2 (\mathbf{Q}_{\text{eff}}^2) \cdot [xg(x, \mathbf{Q}_{\text{eff}}^2)]^2 \approx [x^{-0.2}]^2$$

and since $x \approx 1/W^2$ at small $x \Rightarrow \mathbf{\sigma}_{\gamma^* \mathbf{p} \to \mathbf{V} \mathbf{p}}^{\mathbf{L}} \approx W^{0.8}$

- 2. Approximate universality of t-dependence, $e^{-(b_0 + 2 \alpha' P \ln W^2) \cdot |t|}$: two-gluon approx.: $\alpha'_P = 0 \implies b \equiv b_0 \approx 4 \text{ GeV}^2$ BFKL LLA: $\alpha'_P \leq 0.1 \text{ GeV}^{-2} \implies$ weak dep. of b on W $\Rightarrow \alpha'_P =$ "small"
- **3.** Approximate restoration of flavour independence: at asymptotic Q², the VM cross sections are in the ratio ρ^0 : ω : ϕ : J/ψ = 9 : 1 (.0.8) : 2 (.1.2) : 8 (.3.5)

At which scale Q_{eff}^2 should xg be evaluated?

i.e. which (or which combination) of Q^2 , M_{VM}^2 and |t| is the scale of the process? e.g., in Ryskin model $Q^2_{eff} = \frac{1}{4} \cdot (Q^2 + M_{VM}^2 + |t|)$

W dependence: pQCD vs. Regge and

Pomeron trajectory

Elastic VM in photoproduction $(Q^2 = 0)$

Double-pole Pomeron models at Q^2 \sim 0

Double-pole Pomeron models: VM in DIS

Assume $\mathbf{R} = \sigma_L / \sigma_T$ from pQCD (Brodsky et al.) and fit ρ^0 cross sections vs. W in Q² bins using the previous 8 + 4 extra = 12 parameters.

Then predict ω , ϕ and J/ ψ cross sections.

Double-pole Pomeron models: VM in DIS

Assume $\mathbf{R} = \sigma_L / \sigma_T$ from pQCD (Brodsky et al.) and fit ρ^0 cross sections vs. W in Q² bins using the previous 8 + 4 extra = 12 parameters.

Then predict ω , ϕ and J/ ψ cross sections.

Conclusions based on this model:

VM production can be described for 1.7 < W < 250 GeV, 0 < Q² < 35 GeV². No hard-pomeron contribution (like for DL) necessary: **the VM mass is the only parameter which governs the transition!**

Trajectories as tool to parameterise data

Language of Regge phenomenology still alive at HERA.

Indeed the **trajectories** (collective states exchanged in Regge theory) contain the relevant quantities to describe hadronic interactions at a macroscopic level: in the linear approximation, $\alpha_P(t) = \alpha_P(0) + \alpha'_P \cdot t$, they are a **convenient way to parameterise data**:

- $\alpha_{P}(0)$ and α'_{P} : fundamental parameters in hadronic interactions
- which govern the W dependence $(\alpha_P(0))$ and the t dependence (α'_P) \Rightarrow the profile of the colour cloud responsible for strong interactions

Therefore, be able to compute the P trajectory from first principles (e.g. using QCD) \Rightarrow fully understand hadronic interactions.

An effective P trajectory can be extracted from simultaneous study of the W and t dependences \Rightarrow fit $d\sigma/dt \propto W^{4(\alpha_P(<t>)-1)}$ in each t bin \longrightarrow

Effective P-trajectories from elastic VM

Different behaviour of $\alpha_{P}(0)$ and $\alpha'_{P}(0)$

Clear increase of $\alpha_P(0)$: interaction gets "harder"

- with increasing M^2_{VM}
- and (likely) with Q^2

 $\alpha'_{P} \approx 0.1 \div 0.15 \text{ GeV}^{-2}$ (smaller than DL soft) for ρ^{0} , ϕ and J/ψ in photoproduction (Q²=0) \Rightarrow **no dependence on M**_{VM}

In DIS, need more data: present data not conclusive

$Q^2 + M^2_{VM}$ as a "scale" for VM production

Elastic VM dependence on $Q^2 + M_{VM}^2$

Universal behaviour of VM cross-sections scaled by the SU(4) factors: $\rho^0: \omega: \phi: J/\psi = 9:1:2:8$ versus $Q^2 + M^2_{VM}$

Good piece of work!

However, looking closer,

Elastic VM dependence on $Q^2 + M_{VM}^2$

Indeed, pQCD does **not** expected the SU(4) relation to hold. \longrightarrow

The SU(4) prediction $\rho:\omega:\phi:J/\psi = 9:1:2:8$

The factors 9:1:2:8 come from the leptonic widths of VM decays: $\Gamma_{VM \to e^+e^-} = 16\pi\alpha_{em}^2 \frac{|\Psi_{VM}(0)|^2}{M_{VM}^2} |\Sigma a_i Q_i|^2 \qquad \underbrace{VM}_{e^-} \varphi^* \qquad e^+ e^-$

If: $\frac{|\Psi_{VM}(0)|^2}{M_{VM}^2}$ does not depend on the VM, then the ratio of widths will depend only on the charge assignments Q_i of the quarks:

VM	Qi	$ \Sigma a_i Q_i ^2$	Factor	Measured
ρ ⁰ ω φ J/ψ	$\frac{1}{\sqrt{2}} \cdot (uu - dd)$ $\frac{1}{\sqrt{2}} \cdot (uu + dd)$ ss cc	$ \begin{array}{c} (1/\sqrt{2})^2 \cdot \left[\frac{2}{3} - (-1/3)\right]^2 \\ (1/\sqrt{2})^2 \cdot \left[\frac{2}{3} + (-1/3)\right]^2 \\ & \left[-\frac{1}{3}\right]^2 \\ & \left[\frac{2}{3}\right]^2 \end{array} $	9 1 2 8	9 0.8 1.8 7

 $\begin{array}{l} \text{The question is: does the } \sigma_{ep \ \rightarrow \ eVp} \ depend \ on \ M_{VM} \\ \underline{\text{only}} \ through \ \Gamma_{VM \ \rightarrow \ e^+e^-} \ ? \end{array}$

Ratio(VM₁, VM₂)
$$\approx \frac{\Gamma_{VM1 \rightarrow e^+e^-} \cdot M_{VM1}}{\Gamma_{VM2 \rightarrow e^+e^-} \cdot M_{VM2}}$$
 cannot neglect this!

 $\Rightarrow \rho: \omega: \phi: J/\psi = 9: 1 \cdot 0.8: 2 \cdot 1.2: 8 \cdot 3.5 = 9: 0.8: 2.4: 28.1$

Therefore, the simple **SU(4) relation 9:1:2:8 should NOT hold**.

Elastic VM dependence on $Q^2 + M_{VM}^2$

New and more precise data:

 σ_{ω} and σ_{ϕ} when scaled by SU(4) factors 1/9 and 2/9 lie on top of σ_{ρ}

Elastic VM dependence on $Q^2 + M_{VM}^2$

 σ_{ω} and σ_{ϕ} when scaled by SU(4) factors 1/9 and 2/9 lie on top of σ_{ρ}

 $\sigma_{J/\psi}$ scaled by the SU(4) factor 9/8 is \approx 40% higher! \Rightarrow the 9:1:2:8 factors do not work for the J/ ψ

With future data, check if **W dependence** of VM's at fixed Q²+M² is the same

Giuseppe Iacobucci

Ratios of Vector Mesons vs. Q²

Another way to look at it: now plotting ratio vs. Q^2 (not Q^2+M^2)

- Three **pQCD "predictions"**:
- \Box VM ratios increase with Q²
- $\label{eq:sterms} \square \mbox{ much faster rise for } \sigma_{J/\psi} \ / \sigma_{\rho^0} \\ \mbox{ than for } \sigma_{\varphi} \ / \sigma_{\rho^0} \\ \end{tabular}$
- $\Box \text{ reaching, for } \mathbf{Q}^2 \gg \mathbf{M}_{VM}^{2}:$ $\rho: \omega: \phi: J/\psi = 9: 1 \cdot 0.8: 2 \cdot 1.2: 8 \cdot 3.5$

The first two are confirmed by data. No evidence yet for the last one: need more data and at larger Q^2

However...

Simple VDM describes the rise of ratios

VDM form:
$$\sigma_{\gamma p \to V p} \propto \frac{\Gamma_{V \to e^+e^-}}{(Q^2 + M_V^2)^2}$$

Plot the ratios:
 $\frac{\sigma_{\gamma p \to V_1 p}}{\sigma_{\gamma p \to V_2 p}} \propto \frac{\Gamma_{V_1 \to e^+e^-}}{\Gamma_{V_2 \to e^+e^-}} \cdot \frac{(Q^2 + M_{V_2}^2)^2}{(Q^2 + M_{V_1}^2)^2}$
using the experimental
measurements for the $\Gamma_{V \to e^+e^-}$
 $\downarrow \downarrow$
The rise and the speed of the rise
are well described by VDM (the

bands show the errors on $\Gamma_{V \rightarrow e+e-}$): we **do not really need pQCD here!**

proton dissociative VM production $ep \rightarrow eVY$

Scattering off much smaller objects than the proton

Ratio of p-dissociation and exclusive ρ^0 electroproduction

Schematically, $ep \rightarrow e\rho^0 p \,/\, ep \rightarrow e\rho^0 Y$:

Assuming vertex factorization:

$$\frac{\sigma_{\gamma_p \to \rho_Y}}{\sigma_{\gamma_p \to \rho_p}} \propto \left[\frac{g_{\gamma^* \rho^0}(t, Q^2, \lambda) \cdot G_{pN}(t, M_Y)}{g_{\gamma^* \rho^0}(t, Q^2, \lambda) \cdot g_{pp}(t)} \right]^2 \cdot \left[\frac{(W^2 / M_Y^2)^{\alpha(t) - 1}}{(W^2 / W_0^2)^{\alpha(t) - 1}} \right]^2 = f(t, M_Y)$$

 \Rightarrow the ratio should not depend on Q^2

Ratio $(d\sigma^{ep \rightarrow eY\rho^0}/dt) / (d\sigma^{ep \rightarrow ep\rho^0}/dt)$ vs. Q²

VM production at high |t|:

are |t| and Q² equivalent scales?

Photoprod. of proton-dissoc. VM at high |t|

High-|t| domain: little explored so far.

At high-|t|, proton dissociative production dominates. Example:

 \Rightarrow study proton dissociation to investigate high-|t| dynamics

Photoprod. of proton-dissoc. VM at high |t|

Recently, Forshaw and Poludniowski fitted ZEUS preliminary data for p-dissociative photoproduction of ρ^0 , ϕ and J/ ψ mesons:

BFKL LLA approach: consistent with data

two-gluon-exchange approach at LO: inadequate

"Smoking gun for BFKL?"

Extraction of α'_{P} from high |t| VM

α'_{P} depends on the t-range measured

P trajectory: comparison between *ep* and *pp*

Ratios of Vector Mesons

Ratios of Vector Mesons: Q² vs. |t|

Why ratios of **proton dissoc. vs.** |**t**| are rising faster than **elastic vs. Q**² ?

Difference generated by the fact that:

1. We mix **Elastic** and **p-dissociative**? **No**: naïvely, vertices should factorise.

2. are \mathbf{Q}^2 and $|\mathbf{t}| \underline{\text{not}}$ equivalent scales? **Possible**: if the true scale is $\mathbf{Q}^2_{\text{eff}} = \boldsymbol{\alpha} \cdot \mathbf{Q}^2 + \boldsymbol{\beta} \cdot |\mathbf{t}| + \boldsymbol{\gamma} \cdot \mathbf{M}^2_{\mathbf{V}}$ not necessarily $\boldsymbol{\alpha} \equiv \boldsymbol{\beta} \equiv \boldsymbol{\gamma}$.

3. Different cross section dependence?
Possible, in view of what pQCD expects →

Ratios of Vector Mesons: Q² vs. |t|

Future prospects: 99-00 data & HERA II

Data discussed today: mostly up to 1997 data (~ 40 pb⁻¹).

Still ~ 80 pb⁻¹ on tape to analyse +

expect \geq 5 times larger luminosity from HERA II

Increase in luminosity: overall factor ≥ 10

 \Rightarrow better precision and extension of Q², |t| and M_{VM} ranges

H1: future installation of **Very Forward Proton Spectrometer** with increased acceptance for $x_L \sim 1$:

Conclusions

1. pQCD can describe VM data for large Q^2 , |t| or M^2_{VM} . However,

2. Regge theory still alive: two pomerons? two-pole structure? Remember: both pQCD and Regge are fundamental tests for future theories which aim to describe the dynamics of large color systems.

3. P trajectory:

 $\alpha'_{P} \sim 0.1 \text{ GeV}^{-2}$ for ρ^{0} , ϕ and J/ψ at $|t| < 1.3 \text{ GeV}^{2}$ $\alpha'_{P} \sim 0 \text{ GeV}^{-2}$ for ρ^{0} , ϕ at $|t| > 1.3 \text{ GeV}^{2}$;

the **flattening measured at large** |t| is similar to pp single diffr.

 \Rightarrow P trajectory universality also at large |t| ?

4. VM ratios as a test of pQCD at asymptotic scales. pQCD suggests large correction factors for the J/ψ : forget the SU(4) factors 9 : 1 : 2 : 8 ?!

Reserve

$R = \sigma_L / \sigma_T$ for elastic ρ^0 electroproduction

Early pQCD prediction: different Q² dep. for σ_{L} and σ_{T} \Rightarrow R expected to increase with Q²

t-slope of $\psi(2S)$

W-dependence of elastic J/ ψ vs. Q²

