

George W.S. Hou (侯維恕) National Taiwan University

May 18, 2004 @

National Taiwan University

Implications of $B \rightarrow \phi K_S$ Anomaly for Super B Factory and Colliders

> George W.S. Hou (侯維恕) National Taiwan University

May 4, 2004 @ CFIF , IST, Lisbon

Implications of $B \rightarrow \phi K_S$ Anomaly for Super B Factory and Colliders

> George W.S. Hou (侯維恕) National Taiwan University

April 22, 2004 @ Rabat

Implications of $B \rightarrow \phi K_S$ Anomaly for Super B Factory and Colliders

> George W.S. Hou (侯維恕) National Taiwan University

April 20, 2004 @ CERN

New Physics CPV Phase in the Prese

• Intro

CPV in Mixing- $De\ c\ a\ y$ Interference / $S_{\phi K_s}$ Data 11/

- (Abelian) Flavor Symmetry and SUSY 6
- Accounting for $S_{\phi K_S}$, $S_{K_S \pi^0}$, $S_{\eta K_S} \& |A_{\Box}(\phi K^*)|^2$ 6
- Situation for *B_s* Mixing
- Super B *C ris p* Measurement: $S_{K^{*0}(K_{S}\pi^{0})\gamma}$
- Collider Study
- Conclusion

3

8

(

CPV in Mixing-*De c a y* Interference

May 18, 2004 @ DESY

The Duel of the B Factories

KEK

SLAC

May 18, 2004 @ DESY

George W.S. Hou (NTU)

Ma

4/30/2004

14

5/1

2001 ! The Current Focus [NTU has a hand in all]

Measure Both Decay Vertex

Observation of Large CP Violation

VOLUME 87, NUMBER 9

PHYSICAL REVIEW LETTERS

27 August 2001

Observation of Large CP Violation in the Neutral B Meson System $B \longrightarrow J/\psi K_{ m S}$

K. Abe,⁹ K. Abe,³⁷ R. Abe,²⁷ I. Adachi,⁹ Byoung Sup Ahn,¹⁶ H. Aihara,³⁹ M. Akatsu,²⁰ G. Alimonti,⁸ K. Asai,²¹ M. Asai,¹⁰ Y. Asano,⁴⁴ T. Aso,⁴³ V. Aulchenko,² T. Aushev,¹⁴ A. M. Bakich,³⁵ E. Banas,²⁵ S. Behari,⁹ P.K. Behera,⁴⁵ D. Beiline,² A. Bondar,² A. Bozek,²⁵ T. E. Browder,⁸ B. C. K. Casey,⁸ P. Chang,²⁴ Y. Chao,²⁴ K.-F. Chen,²⁴ B.G. Cheon.³⁴ R. Chistov.¹⁴ S.-K. Choi.⁷ Y. Choi.³⁴ L. Y. Dong.¹² J. Dragic.¹⁹ A. Drutskov.¹⁴ S. Eidelman.² V. Eiges.¹⁴ Y. Enari,²⁰ R. Enomoto,⁹ C. W. Everton,¹⁹ F. Fang,⁸ H. Fujii,⁹ C. Fukunaga,⁴¹ M. Fukushima,¹¹ N. Gabyshev,⁹ A. Garmash.²⁹ T. J. Gershon.⁹ A. Gordon.¹⁹ K. Gotow.⁴⁶ H. Guler.⁸ R. Guo.²² J. Haba.⁹ H. Hamasaki.⁹ K. Hanagaki.³¹ F. Handa,³⁸ K. Hara,²⁹ T. Hara,²⁹ N. C. Hastings,¹⁹ H. Hayashii,²¹ M. Hazumi,²⁹ E. M. Heenan,¹⁹ Y. Higasino,²⁰ I. Higuchi,³⁸ T. Higuchi,³⁹ T. Hirai,⁴⁰ H. Hirano,⁴² T. Hojo,²⁹ T. Hokuue,²⁰ Y. Hoshi,³⁷ K. Hoshina,⁴² S.R. Hou,²⁴ W.-S. Hou,²⁴ S.-C. Hsu,²⁴ H.-C. Huang,²⁴ Y. Igarashi,⁹ T. Iijima,⁹ H. Ikeda,⁹ K. Ikeda,²¹ K. Inami,²⁰ A. Ishikawa,²⁰ H. Ishino,⁴⁰ R. Itoh,⁹ G. Iwai,²⁷ H. Iwasaki,⁹ Y. Iwasaki,⁹ D. J. Jackson,²⁹ P. Jalocha,²⁵ H. K. Jang,³³ M. Jones,⁸ R. Kagan,¹⁴ H. Kakuno,⁴⁰ J. Kaneko,⁴⁰ J. H. Kang,⁴⁸ J. S. Kang,¹⁶ P. Kapusta,²⁵ N. Katayama,⁹ H. Kawai,³ H. Kawai,³⁹ Y. Kawakami,²⁰ N. Kawamura,¹ T. Kawasaki,²⁷ H. Kichimi,⁹ D. W. Kim,³⁴ Heejong Kim,⁴⁸ H. J. Kim,⁴⁸ Hyunwoo Kim,16 S.K. Kim,33 T.H. Kim,48 K. Kinoshita,5 S. Kobayashi,32 S. Koishi,40 H. Konishi,42 K. Korotushenko,³¹ P. Krokovny,² R. Kulasiri,⁵ S. Kumar,³⁰ T. Kuniya,³² E. Kurihara,³ A. Kuzmin,² Y.-J. Kwon,⁴⁸ J.S. Lange,⁶ G. Leder,¹³ M. H. Lee,⁹ S. H. Lee,³³ C. Leonidopoulos,³¹ Y.-S. Lin,²⁴ D. Liventsev,¹⁴ R.-S. Lu,²⁴ J. MacNaughton,¹³ D. Marlow,³¹ T. Matsubara,³⁹ S. Matsui,²⁰ S. Matsumoto,⁴ T. Matsumoto,²⁰ Y. Mikami,³⁸ K. Misono,²⁰ K. Miyabayashi,²¹ H. Miyake,²⁹ H. Miyata,²⁷ L. C. Moffitt,¹⁹ G. R. Moloney,¹⁹ G. F. Moorhead,¹⁹ S. Mori,⁴⁴ T. Mori,⁴ A. Murakami,³² T. Nagamine,³⁸ Y. Nagasaka,¹⁰ Y. Nagashima,²⁹ T. Nakadaira,³⁹ T. Nakamura,⁴⁰ E. Nakano,²⁸ M. Nakao,⁹ H. Nakazawa,⁴ J. W. Nam,³⁴ Z. Natkaniec,²⁵ K. Neichi,³⁷ S. Nishida,¹⁷ O. Nitoh,⁴² S. Noguchi,²¹ T. Nozaki,⁹ S. Ogawa,³⁶ T. Ohshima,²⁰ Y. Ohshima,⁴⁰ T. Okabe,²⁰ T. Okazaki,²¹ S. Okuno,¹⁵ S. L. Olsen,⁸ H. Ozaki,⁹ P. Pakhlov,¹⁴ H. Palka,²⁵ C. S. Park,³³ C. W. Park,¹⁶ H. Park,¹⁸ L. S. Peak,³⁵ M. Peters,⁸ L.E. Piilonen,⁴⁶ E. Prebys,³¹ J.L. Rodriguez,⁸ N. Root,² M. Rozanska,²⁵ K. Rybicki,²⁵ J. Ryuko,²⁹ H. Sagawa,⁹ Y. Sakai,⁹ H. Sakamoto,¹⁷ M. Satapathy,⁴⁵ A. Satpathy,⁹⁵ S. Schrenk,⁵ S. Semenov,¹⁴ K. Senyo,²⁰ Y. Settai,⁴ M. E. Sevior,¹⁹ H. Shibuya,³⁶ B. Shwartz,² A. Sidorov,² S. Stanič,⁴⁴ A. Sugi,²⁰ A. Sugiyama,²⁰ K. Sumisawa,⁹ T. Sumiyoshi,⁹ J.-I. Suzuki,⁹ K. Suzuki,³ S. Suzuki,⁴⁷ S. Y. Suzuki,⁹ S. K. Swain,⁸ H. Tajima,³⁹ T. Takahashi,²⁸ F. Takasaki,⁹ M. Takita,²⁹ K. Tamai,⁹ N. Tamura,²⁷ J. Tanaka,³⁹ M. Tanaka,⁹ G.N. Taylor,¹⁹ Y. Teramoto,²⁸ M. Tomoto,⁹ T. Tomura,³⁹ S. N. Tovey,¹⁹ K. Trabelsi,⁸ T. Tsuboyama,⁹ T. Tsukamoto,⁹ S. Uehara,⁹ K. Ueno,²⁴ Y. Unno.³ S. Uno.⁹ Y. Ushiroda.⁹ S. E. Vahsen.³¹ K. E. Varvell.³⁵ C. C. Wang.²⁴ C. H. Wang.²³ J. G. Wang.⁴⁶ M.-Z. Wang,²⁴ Y. Watanabe,⁴⁰ E. Won,³³ B.D. Yabsley,⁹ Y. Yamada,⁹ M. Yamaga,³⁸ A. Yamaguchi,³⁸ H. Yamamoto,⁸ T. Yamanaka,²⁹ Y. Yamashita,²⁶ M. Yamauchi,⁹ S. Yanaka,⁴⁰ J. Yashima,⁹ M. Yokoyama,³⁹ K. Yoshida,²⁰ Y. Yusa,³⁸ H. Yuta,¹ C. C. Zhang,¹² J. Zhang,⁴⁴ H. W. Zhao,⁹ Y. Zheng,⁸ V. Zhilich,² and D. Žontar⁴⁴

(Belle Collaboration)

Current Belle and BaBar Results for $sin(2f_1)$

Thanks to A. Hoecker

Browder @ LP03¹⁷

Sakharov Conditions: Matter Universe

Sakharov (1964)

tinue Search for CP Violation

George W.S. Hou (NTU)

$S_{\phi K_s}$ Data and Stating Our Theme

78 fb⁻¹:
$$\sin 2\phi_{1eff}(\phi K_S) = -0.73 \pm 0.64 \pm 0.22$$

140 fb⁻¹: $\sin 2\phi_{1eff}(\phi K_S) = -0.96 \pm 0.50^{+0.09}_{-0.11}$

- Results stronger, but consistent (~ doubling of data) **3.5** σ from sin2 $\phi_1 = 0.73$
- Statistics dominated
- 2002: published PRD-RC'03 2003: published PRL'03

BaBar 2003: $B \rightarrow \phi K_S$ Systematic Issues

81 fb⁻¹: $\sin 2\beta_{eff} (\phi K_S) = -0.18 \pm 0.51 \pm 0.09$ submitted PRL 100 fb⁻¹: $\sin 2\beta_{eff} (\phi K_S^0) = +0.457 \pm 0.433 \pm 0.08007$ 04/04 become consistent w/ 0.73

Data size increased and was reprocessed. Extensive checks with data and Toy MC. The large change is attributed to a <u>1s statistical fluctuation</u>.

New 29 fb⁻¹: Gives > +1 !!

Browder @ LP03

May 18, 2004 @ DESY

George W.S. Hou (NTU)

Framework

- (approximate) Abelian Flavor Symmetry SUSY
 Has All Ingredients
 - AFS HasRight-handed^{ws} Cov PhaseMixing
 - SUSY Brings in **Right-handed Dynamics**
- AFS Model Pre-existed

Nir-Seiberg, PLB'93; Leurer-Nir-Seiberg, NPB'94 Theme for SuperB

More Definite, yet Generic, Model Context
 May 18, 2004 @ DESY
 Constraints
 Predictions

Confession:

We've been saying for years "ICPV in B $\rightarrow \phi K_s$ is a great place to search for New Physics". It was lip service. The mindset was "Precision Tests".

So, $S_{\phi K_S} < 0$, for 2nd year, came as a shocker.

George W.S. Hou (NTU)

(Abelian) Flavor Symmetry and SUSY

Mass/Mixing Hierarchy & *R.H. Flavor* Sector

Mass/Mixing Hierarchy & *R.H. Flavor* Sector

The new physics flavor scale

There is no exact symmetry that can forbid such operators

Y. Grossman Footprints of New Physics in the B System Beauty 2003 - p.6

Some Remarks

- Fine-tuning to $\lambda^2 \lambda^3$ to get light sb_{1R} ? *Fine* tuning! $\lambda^2 \sim V_{cb}, \lambda^3 \sim V_{ub}$
- Why TeV Scale SUSY?
 - *Large* Flavor Violation (s-b)
 - Stringent Low Energy Constraints
 - even w/ d decoupled;

- all other SUSY partners a "nuisance" :), so pushed high

Accounting for $S_{\phi K_S}$, $S_{K_S \pi^0}$, $S_{\eta K_S}$ and $|A_{\Box}(\phi K^*)|^2$

Coefficients c_i , c'_i calculated in Mass Basis

Matrix Elements evaluated via Naïve Factorization

$b \rightarrow s\gamma$ (and $B \rightarrow \phi K_s$) Rate Constraints

Amplitudes $\mathcal{A}(\bar{B}^0 \to \phi \bar{K}^0) = -\sqrt{2}G_F f_\phi m_\phi F_1^{B \to K}(m_\phi^2) \varepsilon_\phi \cdot P_B$ $V_{tb}V_{ts}^* \left\{ (a_3 + a_3') + (a_4 + a_4') + (a_5 + a_5') \right\}$ $-\frac{1}{2}(a_7 + a_9 + a_{10}) + \frac{\alpha_s}{4\pi} \frac{m_b^2}{q^2} \tilde{S}_{\phi K} \left(c_{12} + c_{12}'\right) \Big\}$ hadronic uncertainty $\mathcal{A}(\bar{B}^0 \to \bar{K}^0 \pi^0) \propto \left\{ \dots + \frac{\alpha_s}{4\pi} \frac{m_b^2}{a^2} \, \tilde{S}_{K^0 \pi^0} \left(c_{12} - c_{12}' \right) \right\}$

Reason why Opposite Trend in $S_{\phi K_{S}}$ vs $S_{K_{S}\pi^{0}}$, $S_{\eta K_{S}}$

Right-handed interactions

May 18, 2004 @ DESY

Situation for *B_s* Mixing *Clean*

Consequences: Δm_{B_s} , $sin2\Phi_{B_s}$ Tough (!?)

 $3 \text{ ke } \sigma \Box \pi/2$ as example _ighter gluino ~ 500 GeV Needed - $\Delta m_{B_s} > 70 \text{ ps}^{-1}$ Tough ! - $\sin 2\Phi_{B_s} \sim 0 - 1$ Tough ? Vould've preferred [Arhib, Chua, WSH 01] eavier gluino but for ... $S_{\phi K_{c}} \Box 0$ ⁻or lighter gluino, periodicity change $M_{12} = |M_{12}|e^{2i\Phi_{B_{g}}} \cong ae^{-2i\sigma} + be^{-i\sigma} + c$ *a*-term dominant (two \overline{sb}_{1R} exch.) **100 GeV** sb_{1R} ? ~ 200 GeV case Except, Easier Direct Detection !

Experimental Prospects for Δm_{B_s}

May 18, 2004 @ DESY

May 18, 2004 @ DESY

George W.S. Hou (NTU)

Super B: Crisp Measurement S_{K*0(Ksπ)}γ

Inspired by $S_{K_{S}\pi^{0}}$ (BaBar)

Confession II

 Liked AGS Mechanism since beginning Quantum Interference requires two helicities • Alas, Nature is Cunning: $K^{*0} \rightarrow K_{S}\pi^{0}$ Pursued $B^{0} \rightarrow K_{1}$ (1270) γ etc. instead (in Belle) 50 So, BaBar's $S_{V} \rightarrow Camp = 1$ • So, BaBar's $S_{K_{s}\pi^{0}}$ came as a shocker. 'course, had large(r) Si (than Belle) BaBar at Moriond; SuperB Future Invest in Larger Si ! N.B. $S_{K_{S}\pi^{0}\gamma}$ difficult for hadronic

<u>New</u> $B \to K^{*0}\gamma$: CP result on 113 fb⁻¹

prelim.

- Multidimensional fit to
 - $\triangleright \text{ Kinematical variables} \\ m_{ES}, \Delta E, m(K^*)$
 - ▷ event shape variables
 - \triangleright proper time Δt
- The fit takes into account
 - \triangleright Continuum and $B\overline{B}$ background
 - \triangleright Resolution effects on Δz
 - Tagging efficiencies and mistagging probabilities

Main systematic from the uncertainties in the CP structure of the background

$$\begin{split} S_{K^{*0}\gamma} &= 0.25 \pm 0.63 \pm 0.14 \\ C_{K^{*0}\gamma} &= -0.56 \pm 0.32 \pm 0.09 \end{split}$$

One expects C_{K*0} = −A_{CP}(B⁰ → K^{*0}γ) that is consistent with zero:

 $S_{K^{*0}\gamma} = 0.25 \pm 0.65 \pm 0.14$ (fixing $C_{K^{*0}\gamma} = 0$)

12

Totsuka sensei's Charge to Super-KEKB

- Large effects in $S_{\phi K_s}(S_{K_s \pi^0}, S_{\eta K_s})$ and $|A_{\Box}(\phi K^*)|^2$ but plagued by *hadronic uncertainties* ...
- Large NP CPVPhase implied by $S_{\phi K_S} < 0$ Projects <u>Crisp</u> Measurement of $S_{K_S \pi^0 \gamma} \neq 0$
- No Target to Shoot for *if* $S_{\phi K_S} < 0$ *Goes Away*

Let's Hope for the Better This Summer !

B Factory was Built based on $B \rightarrow J/\psi K_S$

A Clean Mode such as $B \rightarrow K_S \pi^0 \gamma$ Justifies **SuperB**

Satisfy Totsuka sensei (MEXT)?

• D⁰-mixing: Just at present limit

[because V_{us} shifted to uc sector generic for Alignment models

 Cannot escape ¹⁹⁹Hg edm [complicated enough]

(Hisano & Shimizu '03)

May 18, 2004 @ DESY

. . .

w/ Kingman Cheung, hep-ph/0404041

From Run I, the lessons on reducing a huge MET sample to a few, constraining events:

Most stringent bounds in mSUGRA $\longrightarrow m_{\tilde{g}} > 195 \text{ GeV}$, and > 300 GeV when $m_{\tilde{q}} \approx m_{\tilde{g}}$. NB: much better than expected a priori...

- much better b-jet trigger, greatly improved acceptance
- b-tagging (SVX algorithm)
- currently using only a fraction of available data

$$\Box$$
 (bb+sb+bs+ss) $\tilde{\chi}_1^0$

~ 10 fb

- Basically, just a light "b"-squark in Production so, Discovery not a problem.
- Question is *Decay*: $\widetilde{sb}_1 \rightarrow s/b + \tilde{\chi}_1^0$ bino LSP or $\widetilde{sb}_1 \rightarrow s/b + \tilde{G}$ gravitino

 $\sin^2\theta$ is b fraction

Anyway, need Good b-tagging ! [s-tagging?]

• Can \widetilde{sb}_{1R} be Stable? (LSP)

```
In principle \rightarrow Heavy MIPs
```


TABLE II: Cross sections in fb for direct squark-pair production at the Tevatron with \sqrt{s} = 1.96 TeV, for 0, 1, 2 b-tagged events. The imposed cuts are $p_{Tj} > 15$ GeV, $|\eta_j| < 2$, b-tagging efficiency $\epsilon_{btag} = 0.6$, and a mistag probability of $\epsilon_{mis} = 0.05$. In parentheses, we give the contribution fed down from direct gluino-pair production.

	$m_{\widetilde{s}b_1} \; ({\rm GeV})$	$0 \ b$ -tag	$1 \ b$ -tag	$2 \ b$ -tag	$0 \ b$ -tag	$1 \ b$ -tag	$2 \ b$ -tag
		standard	$\sin^2\theta_m=1$	<u>sbeauty</u>		$\sin^2\theta_m = 0.75$	
	150	115(0.11)	288(0.54)	175(2.2)	190(0.29)	284(0.89)	104(1.6)
overy (> 10 evts) to 300 GeV 2 fb ⁻¹ & sin ² 0 _m >0.5	200	26(0.091)	70(0.49)	47(2.2)	44(0.27)	70(0.85)	28(1.7)
	250	6.1(0.090)	17(0.49)	11(2.2)	11(0.27)	17(0.85)	6.8(1.7)
	300	1.5(0.090)	4.2(0.49)	2.9(2.2)	2.6(0.27)	4.2(0.85)	1.7(1.7)
e vs double b-tag ain info on sinθ _m g cross section: eck consistency vs mass	350	0.38(0.090)	1.1(0.49)	0.72(2.2)	0.66(0.27)	1.1(0.86)	0.43(1.7)
	400	0.094(0.090)	0.26(0.49)	0.18(2.2)	0.16(0.27)	0.26(0.86)	0.11(1.7)
	450	0.022(0.096)	0.06(0.51)	0.04(2.2)	0.038(0.28)	0.061(0.87)	0.025(1.7)
		<u>reference</u> $\sin^2 \theta_m = 0.5$		\widetilde{sb}_{1R}	$\sin^2 \theta_m = 0.25$		
	150	283(0.66)	243(1.2)	51(1.0)	395(1.3)	165(1.1)	17(0.40)
	200	68(0.63)	61(1.1)	14(1.0)	96(1.3)	42(1.1)	4.6(0.42)
	250	16(0.62)	15(1.1)	3.3(1.0)	23(1.3)	10(1.1)	1.1(0.42)
	300	4.0(0.63)	3.7(1.1)	0.84(1.0)	5.8(1.3)	2.5(1.1)	0.28(0.42)
	350	1.0(0.63)	0.93(1.1)	0.21(1.0)	1.4(1.3)	0.64(1.1)	0.071(0.43)
	400	0.25(0.63)	0.23(1.2)	0.052(1.1)	0.35(1.3)	0.16(1.1)	0.017(0.43)
	450	0.058(0.64)	0.053(1.2)	0.012(1.0)	0.083(1.3)	0.037(1.1)	0.004(0.42)

- Disco up t w/ 2
- Single conta
- b-tag che

May 18, 2004 @ DESY

Conclusion

- $S_{\phi K_{\varsigma}}, S_{K_{\varsigma}\pi^{0}}, S_{\eta'K_{\varsigma}}$ Data May Call for
 - Large *s-b* Mixing, w/ New CPV Phase
 - New *Right-handed* Interaction
- A Light *Flavor-m ix sb*_{1R} Squark? *Independtly Well Motivated (Flavor & SUSY)*
 - Survive $b \rightarrow s\gamma$ (!)

• Can Account for $S_{\phi K_S} \square 0$, but $S_{K_S \pi^0}$, $S_{\eta K_S} \sim S_{\psi K_S}$

- Δm_{B_s} , sin2 Φ_{B_s} May Become *Difficult*
- S_{K_sπ⁰γ} now Promising !!

Push for SuperB w/ Large Silicon

May 18, 2004 @ DESY

Backup Slides ...
The move

Old result: Fit to \$Ks, Ks (80 fb-1)	$s \to \pi^* \pi^-$ and Ks $\to \pi^0 \pi^0$ sample combined
A state where a	$S = -0.18 \pm 0.51$
	$C = -0.80 \pm 0.38$
	0 - 0.00 - 0.00
Old $Ks \rightarrow \pi^+\pi^-$ only:	$S = -0.12 \pm 0.52$
	$C = -0.77 \pm 0.41$
Overlap between reprocessed (new) Run1+2 and old Ks $\rightarrow \pi^*\pi^-$	
STORESTING OF BOUNDARY ON THE SAME	(80% overlap)
Old $Ks \rightarrow \pi^*\pi^-$:	S = 0.02 ± 0.55
	$C = -0.57 \pm 0.44$ 7 45 - 0.0
New $Ks \rightarrow \pi^+\pi^-$:	$S = 0.05 \pm 0.51$
	$C = -0.25 \pm 0.48$
New+Run3 Ks $\rightarrow \pi^{+}\pi^{-}$:	$S = 0.45 \pm 0.43$
(110 fb ⁻¹)	$C = -0.38 \pm 0.37$

i in Dynamics: CPV & *BAU*

 ElectroMagnetism:
 (everyone can feel

 Charge e is Real.

 "We" Understand:

 Gauge Charge is Real.

Im agine a Complex Coupling :

True, or, Possible, for Yukawa (...) Coupling of quarks/leptons to Higgs boson(s)...

Quantum Interference in Amplitude More Interesting

How CP Violation Appears

Finally Explain BAU and Sakharov ...

College Colloquium. Apr. 16, 2004

George W.S. Hou (

Once More on BAU: The Sakharov View

- *B*#*V*
- *CPV* ("Direction")
- Nonequilibrium ("Direction") 10-9 Matter left !

