$\sin \gamma$ CKM Quark Flavor Mixing

Recent CP Violation Results from the B Factories and their Implications on the CKM Paradigm

Taming^(*) the Penguin to Determine $\boldsymbol{\alpha}$

Andreas Höcker LAL - Orsay

(*)J. Charles'99

Reference for updated plots: http://ckmfitter.in2p3.fr

 $|V_{\rm ph}/V_{\rm ch}|$

Determining the CP-Violating CKM Phase

CP Violation (CPV) in B and K Systems:
CPV in interference of decays with and without mixing
CPV in mixing

CPV in interference between decay amplitudes

Tracking Chamber

Support Tube

V

Neutral B_d and B_s Mixing

α

Precise Determination of the Matrix Elements $|V_{ub}|$ and $|V_{cb}|$

> Detection of Rare Decays: Determination of weak phases Search for new physics and direct CPV

03

CP Violation in the Standard Model

- → Local SU(2) invariance of L_{SM} with doublets $(v_{iL}, I_{iL}), (u_{iL}, d_{iL}), i=1..3$ gives rise to charged weak currents
- → Mass terms: $m_f(\overline{f_L}f_R + \overline{f_R}f_L)$ require scalar doublet (ϕ_1, ϕ_2) → Spontaneous symmetry breaking leads to 3x3 quark mass matrices

$$M_{u(d)} = \frac{v g_{u(d)}}{\sqrt{2}}$$

Unitary rotation from mass to flavour eigenstates via

$$U_{u(d,e)}M_{u(d,e)}U_{u(d,e)}^{+} = diag(m_{u(d,e)}, m_{c(s,\mu)}, m_{t(b,\tau)})$$

 \rightarrow Modifies L_{SM} for charged weak currents:

rents:
$$V_{CKM} = U_{u}U_{d}^{+}$$
 $(V_{CKM}V_{CKM}^{+} = Id)$ CKM MatrixKobayashi, Maskawa
1973

The Cabibbo-Kobayashi-Maskawa Matrix

Mass eigenstates ≠ Flavor eigenstates → Quark mixing

B and **K** mesons decay weakly

modified couplings for charged weak currents:

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

V_{CKM} unitary and complex ⇒ 4 real parameters (3 angles and 1 phase) Kobayashi, Maskawa 1973

Wolfenstein Parameterization (expansion in $\lambda \sim 0.2$):

$$V_{CKM} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
 CPV phase

"Explicit" CPV in SM, if:

(phase invariant!) Jarlskog 1985

 $J \approx A^2 \lambda^6 \eta \implies \eta = 0 \Rightarrow \text{ no CPV in SM}$

The Unitarity Triangle

B sector:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\propto A\lambda^3 \propto -A\lambda^3 \propto A\lambda^3$$

 $|\varepsilon'/\epsilon_{K}|, K^{0} \rightarrow \pi^{0} v v$

K sector:

sin v

$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$$

$$\propto \lambda \quad \propto -\lambda \quad \propto -A^2\lambda^5$$

Expect large CP-violating effects in B-System

$$R_{t} = \frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}} \approx -\sqrt{(1-\bar{\rho})^{2} + \bar{\eta}^{2}} e^{-i\beta}$$

$$R_{u} = \frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \approx -\sqrt{\bar{\rho}^{2} + \bar{\eta}^{2}} e^{i\gamma}$$

$$\gamma = \arg V_{ub}^{*}, \quad \alpha = \pi - \gamma - \beta$$

Many Ways Lead to the Unitarity Triangle

The CKM Matrix: Impact of non-B Physics

Observables	CKM Parameters ^(*)	Experimental Sources	Theoretical Uncertainties	Quality
V _{ud} V _{us}	λ	nuclear β decay $K^{+(0)} \rightarrow \pi^{+(0)} e_V$	small	* * *
ε _K	$\eta \propto (1 - ho)^{-1}$	$K^{0} \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$	Β_K , η _{cc}	*
ε'Ιε _K	η	$K^{0} \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$	B ₆ , B ₈	?
Im ² [<i>V</i> [*] _{ts} <i>V</i> _{td}]	∞ (λ² A) ⁴ η²	$K^{0}_{L} \rightarrow \pi^{0} \nu \overline{\nu}$	small (but: ($\lambda^2 A$) ⁴)	* * (*)
V _{td}	(1- ρ) ² + η ²	$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	charm loop (and: ($\lambda^2 A$) ⁴)	* (*)

 $^{(*)}$ Observables may also depend on λ and A - not always explicitly noted

The CKM Matrix: Impact of **B** Physics

Observables	CKM Parameters ^(*)	Experimental Sources	Theoretical Uncertainties	Quality
⊿m _d (V _{td})	(1- ρ) ² + η ²	$B_d \overline{B}_d ightarrow f^+ f^- + X, X_{RECO}$	$f_{B_d} \sqrt{B_d}$	*
⊿ m _s (V _{ts})	Α	$B_s \rightarrow f^+ + X$	$\xi = f_{B_s} \sqrt{B_s} / f_{B_d} \sqrt{B_d}$	* *
sin2 eta	ρ, η	$B_d ightarrow c\overline{c} \ s\overline{d}$, $s\overline{s} \ s\overline{d}$	small	* * *
sin2 α	ρ, η	B _d → π ⁺ (ρ ⁺) π [−]	Strong phases, penguins	?
γ	ρ, η	B ightarrow DK	small	* *
		$b \rightarrow u$, Direct CPV	Strong phases, penguins	?
<i>V_{cb}</i>	A	$b \rightarrow cl_{V}$ (excl. / incl.)	F_{D*}(1) / OPE	* *
<i>V_{ub}</i>	$\rho^2 + \eta^2$	$\boldsymbol{b} \rightarrow \boldsymbol{u} \boldsymbol{l} v$ (excl. / incl.)	Model / OPE	*
V _{td}	(1- ρ) ² + η ²	$B_d \rightarrow \rho \gamma$	Model (QCD FA)	?
<i>V_{ts}</i>	NP	B _d → X _s (K ^(∗)) γ, K ^(∗) I ⁺ I [−] (FCNC)	Model	?
$ V_{ub} , f_{Bd}$	$\rho^2 + \eta^2$	$B^+ \rightarrow \tau^+ \nu$	f _{Bd}	* *
4	-31	km		

(*) Observables may also depend on λ and A - not always explicitly noted

The Asymmetric *B*-Meson Factory PEP-II:

9 GeV e⁻ on 3.1 GeV e⁺ :

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

coherent neutral *B* pair production and decay (p-wave)

boost of $\Upsilon(4S)$ in lab frame : $\beta \gamma = 0.56$

BABAR and Belle: Integrated Luminosity

Belle just passed 100 fb⁻¹ ~ 113 million *BB* pairs

B⁰ **B**⁰ Mixing: Principle

Schrödinger equation governs time evolution of $B^0 - \overline{B}^0$ System:

$$i \frac{d}{dt} \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} B^{0} \\ \overline{B}^{0} \end{pmatrix} \qquad \text{with mass} \qquad |B_{L}\rangle \propto p |B^{0}\rangle + q |\overline{B}^{0}\rangle \\ \text{eigenstates:} \qquad |B_{H}\rangle \propto p |B^{0}\rangle - q |\overline{B}^{0}\rangle$$

Defining:

$$\Delta m_{B} \equiv M_{H} - M_{L} \simeq 2 \mid M_{12} \mid$$
$$\Delta \Gamma_{B} \equiv \Gamma_{H} - \Gamma_{L} = 2 \operatorname{Re} \left(M_{12} \Gamma_{12}^{*} \right) / \mid M_{12} \mid$$

One obtains for the time-dependent asymmetry:

$$A_{\text{mixing}}(\Delta t) = \frac{N(\text{unmixed}) - N(\text{mixed})}{N(\text{unmixed}) + N(\text{mixed})} = \cos(\Delta m_B \Delta t)$$

where:: unmixed: $e^+e^- \rightarrow B^0(\Delta t)\overline{B}^0(\Delta t)$ mixed: $e^+e^- \rightarrow B^0(\Delta t)B^0(\Delta t)$

and: $A_{\text{mixing}}(\Delta t = 0) = 1$

$B^0\overline{B}^0$ Mixing (Theory)

Effective FCNC Processes (*CP* conserving):

whose oscillation frequencies $\Delta m_{d/s}$ are computed by:

Important theoretical uncertainties:

Improved error from Δm_s measurement:

$$\sigma_{\rm rel} \left(f_{B_{d/s}}^2 B_{d/s} \right) \simeq 36\%$$
$$\sigma_{\rm rel} \left(\xi^2 = f_{B_s}^2 B_s / f_{B_d}^2 B_d \right) \simeq 10\%$$

B⁰B⁰ Mixing (Experiment)

B⁰**B**⁰ Mixing using Flavour Eigenstates

$B_s^{0}\overline{B}_s^{0}$ Mixing

Δm_s not yet measured. How to use the available experimental inform.?

 \sim

compute the expected PDF for the current prefered value compute the CL **infer an equivalent** χ^2 15 $\chi^{2}(\text{expected})$ $\chi^{2} = (1-A)^{2}/\sigma^{2} - A^{2}/\sigma^{2}$ $\gamma^2 = (1 - A)^2 / c$ 10 5 0 8 10 12 20 22 24 14 16 18 (ps⁻¹) $\Delta m_{\rm s}$

Following a presentation of F. Le Diberder at the CERN CKM workshop (Feb. 02)

Constraints from Δm_d and Δm_s

Waiting for a Δm_s measurment at Tevatron...

Time-dependent CP Asymmetry

CP violation arises from interference between decays with and without mixing:

$$\lambda_{f_{CP}} \neq \pm \operatorname{Prob}(\overline{B}^{0}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(B^{0}(t) \rightarrow f_{CP})$$

Time-dependent *CP* **Observables:**

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{2 \text{ Im } \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

The Golden Channel: $B^0, \overline{B}^0 \rightarrow J/\psi K_{s,L}$

Single weak phase:

• clean extraction of CP phase

• no direct CPV:
$$\left| \lambda_{J/\psi K_{S,L}^0} \right| = 1$$

$$\boldsymbol{A}_{J/\psi K^{0}_{S,L}}(\boldsymbol{t}) = -\eta_{J/\psi K^{0}_{S,L}} \cdot \sin(2\beta) \cdot \sin(\Delta \boldsymbol{m}_{\boldsymbol{B}_{d}}\boldsymbol{t})$$

Time-dependent CP Asymmetries

asymmetries later...

World Average:

Determination of the Matrix Elements $|V_{cb}|$ and $|V_{ub}|$

Symmetry of heavy quarks [=SU(2n_Q)]:

- in the limit $m_Q \rightarrow \infty$ of a Qq system, the heavy quark represents a static color source with fixed 4-momentum
- the light degrees of freedom become insensitive to spin and flavor of the heavy quark

See the very pedagogical talk given by M. Luke at FPCP'02: http://www.hep.upenn.edu/FPCP/talks/1801/180101Luke.pdf

For both, $|V_{cb}|$ and $|V_{ub}|$, exist exclusive and inclusive semileptonic approaches.

The theoretical tools are *Heavy Quark Effective Theory* (HQET) and the Operator Product Expansion (OPE), respectively.

■ $|V_{ub}| (\rightarrow \rho^2 + \eta^2)$ is crucial for the SM prediction of sin(2 β) ■ $|V_{cb}| (\rightarrow A)$ is important for the interpret. of kaon physics (ε_K , BR($K \rightarrow \pi \nu \nu$), ...)

Exclusive Semileptonic $B \rightarrow D^* I_V$ **Decays**

• Measurement of $B \to D^* \ell \overline{v}$ rate as fct. of $B \to \ell \overline{v}$ momentum transition ω

Determination of $|V_{cb}|$ from extrapolation to $\omega \rightarrow 1$ (theory is most restrictive)

Inclusive Semileptonic $B \rightarrow X_c I_V$ Decays

• OPE shows that for $\Lambda_{\rm QCD} \ll m_b$, inclusive *B* decay rates are equal to *b* quark decay rates. Corrections are suppressed by $\Lambda_{\rm QCD} / m_b$ and $\alpha_s(m_b)$.

Bigi, Shifman, Uraltsev; Hoang, Ligeti, Manohar, ...
$$|V_{cb}| \simeq 0.0411 \sqrt{\frac{\mathsf{BR}(B \rightarrow X_c \ell \, \overline{\nu})}{0.105} \frac{1.6 \, \mathsf{ps}}{\tau_B}} \left(1 \pm 0.015_{\mathsf{pQCD}} \pm 0.010_{m_b} \pm 0.012_{1/m_b^3}\right)$$

A promising approach for a theoretically improved analysis is the combined fit of the HQET parameters Λ und λ_1 (CLEO) to $B \rightarrow X_u \ell \overline{\nu}$ mass and lepton moments or to $b \rightarrow s\gamma$. Allows to directly probe Quark-Hadron Duality \rightarrow successful in τ decays

Bauer et al., hep-ex/0210027 [BABAR, CLEO, DELPHI data]

BABAR, hep-ex/0207084

$|V_{ub}|$ from exclusive Decays (I)

- Pure tree decay.
- Decay rate is proportional to CKM element $|V_{\mu\nu}|^2$

$$\mathsf{BR}(B^0 \to h^- \ell^+ \nu) \propto |V_{ub}|^2 (F_B^2(q^2))$$

+0.80

Problem: form factor is model dependent ! Would need unquenched lattice calculation to become modelindependent...

$$|V_{ub}| = (3.25 \pm 0.14^{+0.21}_{-0.29} \pm 0.55) \times 10^{-3} \text{ (CLEO)}$$

 $|V_{ub}| = (3.69 \pm 0.23 \pm 0.27^{+0.40}_{-0.59}) \times 10^{-3} \text{ (BABAR)}$

CLEO, Phys.Rev.D61:052001,2000; BABAR hep-ex/0207080

|V_{ub}| from inclusive Decays

$|V_{ub}|$ from inclusive Decays

Suppression of the dominant charm background by cutting on the $B \rightarrow X_u/v$ lepton momentum beyond the kinematic limit of $B \rightarrow X_c/v$

<u>Problem</u>: strong model dependence of $|V_{ub}|$

Reduction of model dependence by using HQE and the "shape function" measured in $B \rightarrow X_s \gamma$

$$|V_{ub}| = (4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24) \times 10^{-3}$$

Validity of quark-hadron duality?

inclusive measurement?

CLEO, hep-ex/0202019

Measurement of the whole spectrum (\rightarrow Theorie under control) $B \rightarrow X_u / v$ (Neural Net for Signal)

$$|V_{ub}| = (4.09 + 0.36 + 0.42 + 0.24) \pm 0.01 \pm 0.17) \times 10^{-3}$$

(exp) (b \rightarrow c) (b \rightarrow u) (b \rightar

Data **Spectator Model** Weights / 100 MeV o $B \to X_s \gamma$ 3.5 Ε_γ (GeV) 1.5 2.5 4.5 > 5% CL 1 Δm, SM fit Am. & Am. F 0 V_{ub}/V_{cb} +1 0 1 2 p

CLEO

Extracting the CKM Parameters

Three Step CKM Analysis Using Rfit

AH, H. Lacker, S. Laplace, F. Le Diberder EPJ C21 (2001) 225, [hep-ph/0104062]

Standard Inputs

status: ICHEP'02

no New Physics Tree process Standard CKM fit in hand of lattice QCD $f_{Bd} \sqrt{B_d}$ ξ **Β**κ

V_{ud}

 $|V_{us}|$

V_{cd}

V_{cs}

V_{ub}

Vub

V_{ub}

 $|V_{cb}|$

εĸ

 Δm_d

 Δm_{s}

 $sin2\beta$

${\bf 0.97394 \pm 0.00089}$	neutron & nuclear β decay
0.2200 ± 0.0025	$K \rightarrow \pi I v$
0.224 ± 0.014	dimuon production: vN (DIS)
0.969 ± 0.058	$W \rightarrow XcX (OPAL)$
$(4.09 \pm 0.61 \pm 0.42) \times 10^{-3}$	LEP inclusive
$(4.08 \pm 0.56 \pm 0.40) \times 10^{-3}$	CLEO inclusive & moments $b \rightarrow s\gamma$
(3.25 ± 0.29 ± 0.55) ×10 ⁻³	CLEO exclusive
	\rightarrow product of likelihoods for $\langle V_{ub} \rangle$
(40.4 \pm 1.3 \pm 0.9) $ imes$ 10 ⁻³	Excl./Incl.+CLEO Moment Analysis
(2.271 ± 0.017) ×10 ^{−3}	PDG 2000
(0.496 ± 0.007) ps ⁻¹	BABAR,Belle,CDF,LEP,SLD (2002)
Amplitude Spectrum'02	LEP, SLD, CDF (2002)
0.734 ± 0.055	WA, Updates Moriond'02 BABAR
	and Belle included

m_f(MS) (166 ± 5) GeV/c² (230 \pm 28 \pm 28) MeV $1.16 \pm 0.03 \pm 0.05$ $0.87 \pm 0.06 \pm 0.13$

CDF, D0, PDG 2000 Lattice 2000 Lattice 2000 *Lattice 2000*

+ other parameters with less relevant errors...

status: ICHEP'02

status: ICHEP'02

status: ICHEP'02

New *CP* Results from complementary modes:

...

$$\sin 2\beta'' = \begin{cases} \left[\phi K_{s}^{0}\right] - 0.19_{-0.50}^{+0.52} \pm 0.09_{syst} \\ \left[\phi K_{s}^{0}\right] - 0.73 \pm 0.64 \pm 0.18_{syst} \\ \left[\eta' K_{s}^{0}\right] + 0.76 \pm 0.64_{-0.06syst}^{+0.05} \end{cases}$$

BABAR, hep-ex/020707 = -0.39 ± 0.40 Belle, hep-ex/0207098

status: ICHEP'02

sin2β already provides one of the most precise and robust constraints

How to improve these constraints?

How to measure the missing angles ?

Metrology (II): the sin(2α) - sin(2β) Plane

status: FPCP'02

Standard Constraints

Metrology (II): the sin(2β) - γ Plane

Standard Constraints (not including $\sin 2\beta$) |ε_κ| $|\epsilon_{\rm K}|$ 80 $|\epsilon_{\rm K}|$ 60 $\Delta m_s \& \Delta m_d$ [deg] 40 $|V_{ub}/V_{cb}|$ Δm_d \geq $|\epsilon_{\rm K}|$ 20 $\sin 2\beta_{WA}$ fitter 0 0.2 0.4 0.6 0.8 0 1 $sin 2\beta$

status: FPCP'02

Rare Charmless B Decays

$B \rightarrow K\pi$ and the Determination of γ

Interfering contributions of <u>tree</u> and <u>penguin</u> amplitudes:

$$\boldsymbol{A}_{\boldsymbol{K}\boldsymbol{\pi}} \propto \boldsymbol{P} \boldsymbol{e}^{-\boldsymbol{i}\boldsymbol{\beta}} + \boldsymbol{\lambda}^2 \boldsymbol{e}^{\boldsymbol{i}\boldsymbol{\gamma}} \boldsymbol{T}$$

Potential for significant direct CPV

CP averaged BRs and measurements of direct CPV determine the angle γ

Theoretical analysis deals with:

- SU(3) breaking
- Rescattering (FSI)
- EW penguins

The tool is: QCD Factorization...

... based on Color Transparancy

Large energy release

soft gluons do not interact with small qq-bar color dipole of emitted mesons

■ non-fact. contributions are calculable in pQCD perfect for $m_b \rightarrow \infty$.

But, m_b finite \rightarrow corrections: $O(\Lambda_{QCD}/m_b)$

Fleischer, Mannel (98) Gronau, Rosner, London (94, 98) Neubert, Rosner (98) Buras, Fleischer (98) Beneke, Buchalla, Neubert, Sachrajda (01) Keum, Li, Sanda (01) Ciuchini et al. (01) ...list by far not exhaustive!

Branching Fs. and A_{CP} for $B \rightarrow \pi \pi I K \pi$ status: ICHEP'02

Mode	BABAR (×10) ⁻⁶) Belle	CLEO	World average
$\begin{array}{c} B^{0} \rightarrow \pi^{+}\pi^{-} \\ B^{+} \rightarrow \pi^{+}\pi^{0} \end{array}$	$\begin{array}{c} 4.7 \pm 0.6 \pm 0.2 \\ 5.5 {}^{+1.0}_{-0.9} {\pm} 0.6 \end{array}$	$5.4 \pm 1.2 \pm 0.5 \\ 7.4 ^{+2.3}_{-2.2} \pm 0.9$	$\begin{array}{c} 4.3 {}^{+1.6}_{-1.4} \pm 0.5 \\ 5.6 {}^{+2.1}_{-2.0} \pm 1.5 \end{array}$	$4.78 \pm 0.54 \\ 5.83 \pm 0.96$
$B^0 \to \pi^0 \pi^0$	$< 3.6 \ (1.6^{+0.7+0.6}_{-0.6-0.3})$	< 6.4 $(3.2 \pm 1.5 \pm 0.7)$	< 5.7 $(2.2^{+1.7}_{-1.3} \pm 0.7)$	$(2.01 {}^{+0.70}_{-0.67})$
$B^{0} \rightarrow K^{+}\pi^{-}$ $B^{+} \rightarrow K^{+}\pi^{0}$ $B^{+} \rightarrow K^{0}\pi^{+}$ $B^{0} \rightarrow K^{0}\pi^{0}$	$egin{aligned} &17.9\pm0.9\pm0.7\ &12.8^{+1.2}_{-1.1}\pm1.0\ &17.5^{+1.8}_{-1.7}\pm1.3\ &10.4\pm1.5\pm0.8 \end{aligned}$	$22.5 \pm 1.9 \pm 1.8 \ 13.0 {+2.5 \atop -2.4} \pm 1.3 \ 19.4 {+3.1 \atop -3.0} \pm 1.6 \ 8.0 {+3.3 \atop -3.1} \pm 1.6$	$17.2^{+2.5}_{-2.4} \pm 1.2 \\ 11.6^{+3.0}_{-2.7} {}^{+1.4}_{-1.3} \\ 18.2^{+4.6}_{-4.0} \pm 1.6 \\ 14.6^{+5.9}_{-5.1} {}^{+2.4}_{-3.3}$	$\begin{array}{c} 18.46 \pm 0.98 \\ 12.68 \pm 1.23 \\ 18.09 \substack{+1.73 \\ -1.69} \\ 10.34 \pm 1.48 \end{array}$
$B^0 \rightarrow K^+ K^-$ $B^+ \rightarrow K^+ \bar{K}^0$	< 0.6 < 1.3	< 0.9 < 2.0	< 1.9 < 5.1	
$B^{0} \to K^{0} \bar{K}^{0}$ $A_{CP}(\pi^{+}\pi^{0})$ $A_{CP}(K^{+}\pi^{-})$ $A_{CP}(K^{+}\pi^{0})$ $A_{CP}(K^{0}\pi^{+})$ $A_{CP}(K^{0}\pi^{0})$	$< 0.6 \\ -0.03^{+0.18}_{-0.17} \pm 0.02 \\ -0.102 \pm 0.050 \pm 0.016 \\ -0.09 \pm 0.09 \pm 0.01 \\ -0.17 \pm 0.10 \pm 0.02 \\ 0.03 \pm 0.36 \pm 0.09$	< 4.1 +0.30 ± 0.30 $^{+0.06}_{-0.04}$ -0.06 ± 0.09 $^{+0.01}_{-0.02}$ 0.02 ± 0.09 ± 0.01 +0.46 ± 0.15 ± 0.02	$-0.04 \pm 0.16 \\ -0.29 \pm 0.23 \\ +0.18 \pm 0.24$	$\begin{array}{c} +0.06 \pm 0.16 \\ -0.088 \pm 0.044 \\ \Box \ 0.05 \pm 0.07 \\ +0.04 \pm 0.08 \\ 0.03 \pm 0.36 \pm 0.09 \end{array}$

Agreement among experiments. Most rare decay channels discovered

Bounds on γ

status: ICHEP'02

Ratios of CP averaged branching fractions can lead to bounds on γ .

Neubert-Rosner Bound

status: FPCP'02

CP Violation in $B^0 \rightarrow \pi^+\pi^-$ Decays

Bounds/Predictions on $\alpha - \alpha_{eff}$

$$S_{\pi\pi} = \frac{2 \operatorname{Im} \lambda_{\pi\pi}}{1 + |\lambda_{\pi\pi}|^{2}}, \quad C_{\pi\pi} = \frac{1 - |\lambda_{\pi\pi}|^{2}}{1 + |\lambda_{\pi\pi}|^{2}}$$
to be "tamed"... (Charles)
$$\lambda_{\pi\pi} = e^{-2i\beta} \frac{e^{-i\gamma}}{e^{+i\gamma}} + \frac{P_{\pi\pi}/T_{\pi\pi}}{P_{\pi\pi}/T_{\pi\pi}}$$

Different Strategies:

- Determination of *PIT* by virtue of flavour symmetries (mild theoretical assumptions, eg, P_{EW}=0)
 - SU(2):

Gronau-London Isospin Analysis Grossmann-Quinn bound (also Charles, Gonau *et al.*)

SU(3):
 Fleischer-Buras, Charles
 (P_{ππ} ~ P_{Kπ})

- Using theoretical predictions for P/T
 - "naive" Factorization ($|P/T|^2 \sim BR(B^+ \rightarrow \pi^+ K^0) / BR(B^+ \rightarrow \pi^+ \pi^0)$)
 - |P/T| and phase from QCD Factorization (Beneke et al.) and pQCD (Lee et al.)

$sin(2\alpha_{eff})$ & Isopin Analysis

Using the BRs and the CP asymmetries : $A_{CP}(\pi^{\pm}\pi^{0})$, $S_{\pi\pi}$, $C_{\pi\pi}$ and the amplitude relations: $A^{+-}/\sqrt{2} + A^{00} = A^{+0}$,

 $(A \leftrightarrow \overline{A})$ and $|A^{+0}| = |\overline{A}^{+0}|$

How about More Statistics?

Isospin analysis for present central values, but 500 fb⁻¹

If central value of BR($\pi^0\pi^0$) stays large, isospin analysis cannot be performed by first generation B factories

sin($2\alpha_{eff}$) & SU(3) or "naive" FA

Need to make more assumptions ... achieve better constraints

$sin(2\alpha_{eff})$ & QCD FA

|P/T| and arg(P/T) predicted by QCD FA (BBNS'01)

$sin(2\alpha_{eff})$ & QCD FA

Predicting the Experimental Observables

PEP-II Luminosity Projections

Similar scenario expected for Belle

Conclusions

- **Global CKM fit (CKMfitter) gives consistent picture of Standard Model**
- **sin(2** β **) now most accurate constraint**
 - future consistencies: BABAR \Leftrightarrow Belle ? $J/\psi K_S \Leftrightarrow \phi K_S$

Summer '06: $\sigma(sin2\beta_{WA})$ ~ 0.025 for 1000 fb^-1

- Δm_s : constraint on UT angle γ from LEP/SLD/CDF limit expect measurement from TEVATRON soon: sensitive to new physics!
- Rare K decays enter the game, but more statistics needed also: keep an eye on improving |V_{cb}/!

Need more constraints on CKM phase:

Charmless B decays and CP violation: best fits (in BBNS) around $\gamma \approx 80^{\circ}$

- Conventional isospin analysis potentially unfruitful to extract sin(2α)
- Significant theoretical input needed
- Requires detailed study of relevant theoretical uncertainties

The race for γ : high statistics needed for $B \rightarrow DK(\pi)$ – low theoretical input

Many more results to come from the *B*-factories

The Model Standard remains unscathed

We know the center already quite well... but there is not enough redundancy

A better understanding/prediction of long distance QCD (lattice!) opens the shrine to a full exploitation of the huge data samples currently produced at KEKB and PEPII.

...and the immense data quantities that will be produced at the Tevatron & LHC