Status of the CDF Experiment

University of Liverpool (on behalf of the CDF collaboration)

Beate Heinemann

DESY, April 2002

Outline of the talk

- Accelerator and detector upgrades
- Preliminary results from first data $\sim 4-8 \text{ pb}^{-1}$
 - ➤ Tracking
 - Calorimeter system
 - ≻ Muon system
 - Trigger
- Perspectives for (some) Searches
 - top-quark sector, new U(1) gauge bosons, Run I anomalies, Higgs

Tevatron Run II

Accelerator configuration

- Run IIa:
 - started officially in March
 - until end of 2004
 - Goal: L=1 fb⁻¹ /year=>2fb⁻¹
 - 200 pb⁻¹ by end of 2002
- Run IIb:
 - 2004 until LHC
 - Goal: L=5 fb⁻¹ /year=>15 fb⁻¹
- Increased collision rate: operation at p p crossing times of 396 ns(IIa) or 132 ns (IIb).
- Increased CMS energy: $\sqrt{s} = 2.0 \text{ TeV}$
- Peak Luminosity:
 - Run IIa: 2x10³² cm⁻² s⁻¹
 - Run IIb: 2x10³² cm⁻² s⁻¹
 - so far achieved: 2x10³¹ cm⁻² s⁻¹ 3

The Tevatron

525 people 13 countries

CDF

 $p-\bar{p}$ collisions at sqrt(s) = 2.0 TeV

17 countries

D0

*

The Fermilab Accelerator Complex

- Main Injector (150 GeV proton storage ring) replaces Main Ring (the original Fermilab high energy accelerator)
- Completely revamped stochastic cooling system for pbars
- A new permanent magnet Recycler storage ring for pbars
- Higher energy collisions: 900 GeV
 -> 980 GeV)
- Increased number of p and pbar bunches: 6 -> 36 -> ~100

Run 1 vs Run 2

	Run 1	Run 2
Date	1992 – 1996	2001 - 2007
Integrated Luminosity	110 pb ⁻¹	2fb ⁻¹ -> 15 fb ⁻¹
c.m. energy	1.8 TeV	2 TeV
Luminosity	$2 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$	$2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
Bunch spacing	3.5 µs	396/132 ns

* *

Tevatron Projections

- Run IIa:
 - started officially March 2001:
 - $\int L dt \sim 25 \text{ pb}^{-1} \text{ up to now / spec } L = 1.4 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$
 - : L dt ~200 pb⁻¹ by end of 2002 / spec L= 2×10^{32} cm⁻²s⁻¹
 - $\int L dt \sim 2 fb^{-1}$ by end of 2004
- Run IIb:
 - $\int L dt ~ 15 \, \text{fb}^{-1}$ by end of 2007
- all at a cm energy of ~ 1.96 TeV
- Proposals to extend Run 2 data to 20-30 fb⁻¹
 - Upgrade of linac could provide 50% more protons

Integrated Luminosity Performance and Goal

TeVatron performance not ideal yet but accelerator division have worked out detailed studies schedule to improve this!

*

Tevatron Physics Potential Run 2 vs Run 1

Process		Production sensitivity
р <u>р</u> ->ХУ	Mass Y GeV/c ²	increase
t t	175	1.4 × 200
WН	120	1.2 × 200
qq	300	1.8×200
99	300	2.1×200

Sensitivity increase of Run 2 vs Run 1 200 - 400

CDF Collaboration

North America

2 Universities

25 Universities

3 Natl. Labs

11 countries

55 institutions

525 physicists

횵

Asia

τų,

4 Universities 1 Research Lab

```
1 University
```


3 Universities

10

Experiment status and plans

- Since operation start-up in the collision hall in March 2001, the CDF detector has been commissioned using ~ 20 pb⁻¹ of data provided by the Tevatron (utilized about 4 to 8).
- Most detector components are ready for physics quality data.
- Goal is first physics results by summer-fall 2002

Detector roll-in February 2001

CDF

Central Outer Tracker Upgrade

96 wire planes 8 superlayers 50% are 3° stereo ~1.0 cm drift cells 30,240 sense wires

COT performance

COT wires

96 pulse height measurements dE/dx measured from pulse width via new ASD + TDC electronics

3

Cosmic ray tracks

COT performing very well: ready for physics!

5

Silicon Detector Upgrade

- The silicon strip detector is a stand-alone 3d tracking system
- A six layer vertex detector with impact parameter resolution $\sigma_d = \sqrt{a^2 + (b/P_t)^2}$ (a =7µm, b =20-30µm)
- Intermediate silicon layers for extrapolation to central outer tracker and forward tracking up to $\eta=2$

Installation of the Silicon Detectors

Installation inside CDF

SVXII+LOO 94% integrated and working ISL cooling pipes blocked -> free with Laser in summer shutdown 16

Tracking data: J/ψ resolution

- Resolution improved from 22 MeV to 16.5 MeV
- further improvement expected with better internal alignment

- Clear signals of D⁺, D_s and B⁺ using the COT and Si tracking
- COT calibration, Si alignment and tracking algorithms are progressing rapidly

X-Raying the material

etc.) well understood: vital for simulation!

Time Of Flight System

- New detector between coil and tracking chamber
- measure TOF of charged particles with 100 ps precision

Final calibrations in progress but 150 ps esolution achieved already!

Particle Identification: TOF

 Φ ->KK reconstruction: S/B improves from 1/50 to 1/2 when using TOF for Particle ID!!!

Impact on B-physics: TOF

- Physics associated with B-meson, in particular B_s^0 mixing (unitary triangle verification)
- With LOO and TOF discovery reach/exclusion limits improved by >= 30%

• Also already proven to be useful e.g. for rejection of cosmic rays

Calorimeter Upgrades

Central calorimeters retained from Run 1 with new readout electronics

- $|\eta|$ out to 1.0
- EM and hadronic towers with segmentation: $\phi \times \eta~=15^{0} \times 0.11$
- Drift chamber at maximum of shower in EM Calorimeter ("ShowerMax")

New scintillator based plug calorimeter

- $|\eta|$ out to 3.6
- EM, hadronic
- ShowerMax
- central calorimeter η - ϕ -segmentation maintained as far as possible.

New MiniPlug

- $|\eta|$ out to 5.5
- diffractive physics/forward jets

High Pt Electrons

$Z \rightarrow e^+ e^-$ invariant mass

W -> ev transverse mass

EM Calibration in good shape in both central and new plug Calorimeters

Muon System Upgrade

"Old" Run 1 central muon detectors retained but new readout electronics

"New" extension (CMX) and intermediate (IMU) muon chambers will extend muon coverage from $|\eta| = 0.6$ to 1.6 (for $|\eta| > 1.0$ use Si tracking)

More than 60000 J/ Ψ mesons in μ channel

More Muon Data

Muon System and reconstruction performing well

First τ signals

Nent = 112

Clear W-> τv signal already with 4 pb⁻¹ τ -ID important for SUSY at high tan β

Trigger system

- Level 1:
 - Calorimeter:
 - single towers: jets, electrons,...
 - Global triggers : MET, SumEt,...
 - eXtremly Fast Tracker (PT>1.5 GeV)
 - Muons
- Level 2:
 - Calorimeter clustering
 - Silicon Vertex Tracker
- Level 3:
 - offline-like reconstruction

Calorimeter Trigger

- E.g. Jets:
 - Single Tower trigger at L1
 - Tower clustering at L2
 - Jet Algorithm at L3
 - Inclusive jets prescaled for Et<100 GeV
- all Calorimeter triggers ready for physics

XFT and SVT trigger status

Using SVT Trigger

	Physic	s potential of Run 2 # event	ts in
S	earches	$\frac{1}{\text{Higgs}} \sigma(\text{barn}) \qquad 1 \text{ fb}^{-1}$	
	curenes	SUSY, compositeness, leptoquarks etc.	014
E	lectroweak	W: mass, width, gauge couplings	011
		Top: mass, cross- w 10 section, branching z 10	07
Н	leavy flavour	Lifetimes, cross- section, B_c , Λ_B , B_s studies, CP violation, \mathbf{x}_s $ZH + WH$	04 Y ??
Q	CD	Jet cross-section, α_s , $\pi_s^{(3)}$, π_s	
		33	

Beauty at CDF II

- B-physics greatly profits from Run II upgrades
 - SVT trigger: trigger on hadronic B decays
 - Silicon tracking (decay length, secondary vertex)
 - TOF: particle ID (π -/K-separation)
 - COT: dE/dx for particle
 ID
- highlight B_s mixing: reach up to x_s=30 for only 50 pb⁻¹

Top Physics in Run II

- Discovery (Run I) -> precision (Run II)
- B detection efficiency will be improved in Run 2
- more efficient triggering in all-hadronic mode with level 2 displaced vertex triggers
- Increased acceptance for leptons due to ISL at high η
- 13000 top events in 2 fb⁻¹ (only about 100 used in Run I)

New Physics in Top Sector(1)

- new particle X-> t t
- SM Top Production + Z ' Production. M., = 800 GeV/c² Events/25 GeV/c² Number of Evts in 700-M_-900 Observed: 87 Expected SM Top: 17 Dashed Line: Fit from 400-600 10 1 800 900 400 500 600 700 1000 M, GeVic²

 production cross-section: agreeing with SM?

Uncertainty	Run 1	Run 2a	Run 2b	LHC
Statistical	16	3	0.7	0.4
Systematic	20	6	5	$5 (\sim Lum)$

36

New Physics in Top Sector(2)

- Rare decays:
 - t -> W s BR ~ 10⁻³
 - t -> W d BR ~ 5 x 10⁻⁵
 - t -> g c,u BR ~ 10^{-8}
 - t -> Z c,u BR ~ 10⁻¹²
- Righthanded W
 - F=0.11+-0.15+-0.06
- W polarisation
 - F=0.97+-0.37+-0.12
- M(†)-M(†)=0?

- single top => V_{tb}
 - Run I: σ<13.5 pb @95%CL

	Run 1	Run 2a	Run 2b	LHC
$\sigma(\text{single to})$	p) – (q	~ 20	~ 8	~ 5 (lum)
$\Gamma(t \rightarrow Wb)$	-	~ 25	~ 10	~ 10
$ V_{tb} $	-	~ 12	~ 5	~ 5

Higgs Hunting at the Tevatron

- Inclusive Higgs cross section is quite high: ~ 1pb
 - for masses below ~ 140 GeV, the dominant decay is $H \rightarrow bb$
 - at higher masses, can use inclusive production plus WW* decays
- the best channel below ~ 140 GeV is associated production of H plus a W or Z
 - leptonic decays of W/Z help give the needed background rejection
 - cross section ~ 0.2 pb
- vital ingredients:
 - mass resolutions (jet energies)
 - b-tagging
 - understanding of BG
 - clever analysis (NN,etc.)

Dominant decay mode

Associated production tt + Higgs

- Cross section very low (few fb) but signal:background good
- Major background is tt + jets
- Signal at the few event level:

Higgs Discovery Prospects in Tevatron Run 2

- Can exclude a SM-like Higgs with mass up to ~ 180 GeV/c² with 15 fb⁻¹ of data at 95%CL
- Important to push integrated luminosities to ~ 30 fb⁻¹ for discoveries
 - 3 sigma evidence to ~ 180 GeV/c^2
 - 5 sigma discovery to ~125 GeV/c²
- Maybe pessimistic since working seriously with often gives much better results than anticipated in workshops

Getting ready for the Higgs

- <u>Trigger strategies</u>
 - SVT to select a sample enriched in heavy flavors
 - qqbb, MET + bb

Improved triggering on Met ==> efficiency improved by 40% e.g. for (typical) 40 GeV offline cut Beyond the Standard Model New U(1) Gauge Bosons

- Search for new W' and Z' bosons (CDF Run 1)
 - Mz' > 690 GeV/c²
 - Mw' > 786 GeV/c²
- Run 2 projections:
 - $M_V > \sim 1 \text{ TeV}$ (for SM couplings)

Run I anomalies: Photons

SM expectation for this event: 10⁻⁶ any such new event would be exciting!

Follow up on run I anomalies

10

20

Single Photon Et, CDF Preliminary Entriesch0.8 GeV Approx. 8 pb Isolated EM Clusters, |n|<3.5 Clean Photon Candidates, | 11 <1 10 10 10 50 100 150 300 250 200 350 Photon Et (Geva Entries/2.3 GeV

Photons

45

Conclusions

- Run II started:
 - Tevatron inst. luminosity still factor 10 lower than goal
 - summer shutdown for six weeks to upgrade recycler
 - achieve design luminosity end of 2002
 - CDF detector and trigger mostly ready for physics
 - first physics signals: Z, W, J/psi,
 - ISL cooling problem will be solved in summer shutdown
- physics programme:
 - first 200 pb⁻¹ by end of this year: run I anomalies, B_s mixing, obtain good understanding of detector
 - Run IIa: precision top and W, precision B-physics, many searches (SUSY, LED, the unexpected,...)
 - Run IIb: SM (and SUSY) Higgs, higher precision/sensitivity, follow up on previous discoveries hopefully!!!!)

Properties of the Top Quark

- Mass ~ 175 GeV/c^2
- Γ ~ 1.5 GeV
- $\tau \sim 4 \times 10^{-25} < (\Lambda_{QCD})^{-1} \sim 10^{-23}$ => free top decay
- Spin = $\frac{1}{2}$
- couplings = +2/3e , color triplet, weak (T₃)_L
- BR for t->Wb=99.9% (in SM)
 σ_{ttbar}~6 pb

Summary of Projected Top Quark Measurements

Top quark		Precision			
Property	Run 1 measurement	Run 1	Run 2a	Run 2b	LHC
Mass (CDF + $D\emptyset$)	$174.3\pm3.3\pm3.9{\rm GeV/c^2}$	2.9%	1.2%	1.0%	1%
$\sigma_{t\bar{t}}$	$6.5^{+1.7}_{-1.4}\mathrm{pb}$	25%	10%	5%	5%
W helicity, F ₀	$0.91 \pm 0.37 \pm 0.13$	0.4	0.09	0.04	0.01
W helicity, F ₊	$0.11 \pm 0.15 \pm 0.06$	0.15	0.03	0.01	0.003
$R \equiv rac{B(t ightarrow Wb)}{B(t ightarrow Wg)}$	$0.94\substack{+0.31\\-0.24}$	30%	4.5%	0.8%	0.2%
>0.61 at 90% C.					
$ V_{tb} $	$0.96^{+0.16}_{-0.12}$ (3-gen.)				
	>0.051 at 90% C.L.	> 0.05	> 0.25	> 0.50	> 0.90
$\sigma(\text{single top})$	<18.6 pb	-	20%	8%	5%
$\Gamma(t \rightarrow Wb)$	-	-	25%	10%	10%
Vtb	-		12%	5%	5%
$BR(t \rightarrow \gamma q) 95\% CL$	0.03	0.03	2×10^{-3}	2×10^{-4}	2×10^{-5}
$BR(t \rightarrow Zq)$ 95% CL	0.30	0.30	0.02	2×10^{-3}	2×10^{-4}

Calorimeter: Jets

• Jets being selected on-line and are reconstructed offline. Algorithms are in place and well advanced

Integrated Luminosity History

Top mass in Run 1 -> 2

- Combine 3 CDF and 2 D0 top decay channels
- Measurement comparable to precision of b quark mass, and significantly better than Run 1 projections.

$$\begin{split} M_t &= 174.3 \pm 5.1 \ \text{GeV/c}^2 \\ M_t / M_b &= 36 \pm 2 \\ M_t \sim \text{ scale of EWSB} &= (2 \ \sqrt{2} \ \text{G}_F)^{-1/2} \\ &= 175 \ \text{GeV/c}^2 \end{split}$$

In Run 2 projections are

δ**M**_t ~ 3 (~ 2) GeV/c² with 2 (> 10) fb⁻¹ for (CDF or D0)

51

Peak Luminosity and Intensity

Both Luminosity and intensity are improving!

Tracking data: J/ψ resolution

*Pre-shutdown data with 4.3.0int1

*Latest runs 138021 gives r-phi si coverage for Jpsi 70%