

DESY Seminar 11 Sep, 2001

<u>M. Hazumi</u> (Osaka University, Osaka, Japan) Representing the Belle Collaboration

CP Violation and Rare B Decays at Belle

Sep. 2001

M. Hazumi (Osaka)

Outline

- Introduction
- KEKB Accelerator and Belle Detector
- Observation of Large CP Violation
- Rare B Decays
- Today's Main Topic

• Conclusion

• Introduction

- KEKB Accelerator and Belle Detector
- Observation of Large CP Violation
- Rare B Decays
- Conclusions

A World-Wide Activity Involving 50 Institutions

\rightarrow room for additional 300 physicists available O

Much closer look at KEK

KEK

KEKB Collider

CP Violation and Rare B Decays at Belle

Sep. 2001

M. Hazumi (Osaka)

The Belle Detector

M. Hazumi (Osaka)

CPV due to complex phases in CKM matrix

The Rules of the CPV Game

- Find a decay mode which has two decay paths with different weak phases (i.e. one of them has Vub or Vtd).
- Two amplitudes should be similar for sizable interference.
- Two paths should have "static" phase difference.

Example : $B^+ \rightarrow K^+ \pi^0$ and $B^- \rightarrow K^- \pi^0$

 Δm_B is the origin of "static" phase difference. No hadronic uncertainty !

ka)

CP Violation and Rare B Decays at Belle

Sep. 2001

M. Hazumi (Osaka)

$Sin \Delta mt = 1$ \downarrow $Maximal CP at \quad 3.3 \ ps$ $B0 \ Lifetime = \quad 1.55ps$

Large enough and small enough (It is a miracle to me.)

Sep. 2001

Experimental Challenges

Copious B pair production, efficient B reconstruction Efficient and correct flavor tagging

3) Observation of time-dependent CP asymmetry in B decays to a CP eigenstate with good vertex resolution

• Introduction

- KEKB Accelerator and Belle Detector
- Observation of Large CP Violation
- Rare B Decays
- Conclusions

 Two separate storage rings e⁺ (LER) : 3.5 GeV e⁻ (HER) : 8.0 GeV •E_{CM} : 10.58 GeV at Y(4S) •Luminosity | World Record $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ •target: •achieved:4.5x10³³cm⁻²s⁻¹ •±11 mrad crossing angle •Small beam sizes: $\sigma_v \approx 3 \mu m; \sigma_x \approx 100 \mu m$

- Small beam sizes \Rightarrow low beam currents - 4.5x10³³ with less than 1 Amp in each ring
- ± 11 mrad beam crossing angle

Belle Detector Performance

- Silicon Vertex Detector (SVD)
 - Impact parameter resolution : 55 μ m for p=1GeV/c at normal incidence

6m

- Central Drift Chamber (CDC)
 - $(\sigma_{\text{Pt}}/\text{Pt})^2 = (0.0019\text{Pt})^2 + (0.0034)^2$ (Pt in GeV/c)²
 - K/ π separation with
 - **dE/dx in CDC** ($\sigma_{dE/dx}$ =6.9%)
 - **TOF** ($\sigma_{\text{TOF}} = 95 \text{ ps}$)
 - Aerogel Cerenkov (ACC)
 - Efficiency = ~85%,
 Fake rate = ~10% up to 3.5GeV/c
 - γ , e[±] with CsI crystals (ECL)
 - $\sigma_{\rm E}/{\rm E} \sim 1.8\%$ @ E=1GeV
 - e[±] : effic. > 90% w/ ~0.3% fake for p > 1GeV/e
 - **K**_L and μ^{\pm} with KLM (RPC chambers)
 - μ^{\pm} : effic. > 90% with ~2% fake at p > 1GeV/c

SVD:Vertex Detector

CDC:Drift Chamber

ACC:Hadron ID

TOF:Time of Flight

ECL:EM Calorimeter

KLM:K₁ /µ Detector

Superconducting Solenoid (1.5T)

• Introduction

- KEKB Accelerator and Belle Detector
- Observation of Large CP Violation
- Rare B Decays
- Conclusions

3 data sets were used: Set 1: 10.5 fb⁻¹ (June 1999-July 2000) Set 2: 10.6 fb⁻¹ (Oct 2000-May 2001) Set 3: 8.0 fb⁻¹ (May 2001-July 2001)

Total: 29.1 fb⁻¹ (corresponds to 31.3 million BBbar)

All data samples were analyzed and reconstructed with the same consistent procedure.

$$B^0 \to J/\psi \; K_S(\to \pi^+\pi^-)$$
 (cont'd)

CP Violation and Rare B Decays at Belle

Sep. 2001

M. Hazumi (Osaka)

All except $J/\psi K_L$

 $B^0 \rightarrow J/\psi K_L$

- $J/\psi \rightarrow l^+l^- + (K_L)$
- 2) Assume $B \rightarrow J/\psi K_L$: compute P_{KL}
- 3) Remove reconstructed
 - $B \rightarrow J/\psi K, J/\psi K^*, \dots$
- 4) Cut on a likelihood based on kinematical and shape quantities
 5) Plot P^{*}_B = |P J/ψ + P KL|

Use *inclusive* flavor-specific properties:

Inclusive Leptons:
high-p l⁻
intermed-p l⁺
Inclusive Hadrons:
high-p π⁺
intermed-p K⁺
low-p π⁻
b → c(l⁻ν)
b → c(l⁺ν)

Also include correlations

2-level Multi-dimensional Flavor Tagging

- Uses all events
 - Efficiency > 99%
 - $\epsilon_{\text{effective}} = 27.0 \pm 1.2\%$
- Includes correlations
- Use MC-*r* as a classifier
- Use data-w for CP fits

MC-determined $r \approx 1-2w$ measured from data

Vertex Reconstruction

- For *CP*-side, use $J/\psi \rightarrow l^+l^-$
 - Reject poorly fit events.
 - $\delta z_{CP} \approx 75 \ \mu m \ (rms)$
- For *Tag*-side
 - use well fit tracks
 - iterate: discard worst track
 - $-\delta z_{tag} \approx 140 \ \mu m \ (rms)$
- Require $|z_{CP} z_{tag}| < 2mm ~(\approx 10 \tau_B)$ $\sigma_{\Lambda t} \approx 1.5 \text{ ps}$
- Tails ≈ 3%; Effic. ≈ 85%

1137 evts used in the CP fit.

Validation: B lifetimes

Summary so far

- CP eigenstates with high purity.
 - Purity ~ 90% except for $J/\psi K_L$ (~60% for $J/\psi K_L$)
- Efficient flavor tagging.
 - Effective efficiency = 27.0%
- Efficient vertexing with good resolution

1137 candidate events

• B lifetime measured precisely (high stat. control sample)

Everything is ready. Now let's open the box !

CP is violated in B decays

•Large effect

•Apparent even in the raw data

 $\sin 2\phi_1$ value that maximizes $\prod_i L_i$

$sin2\phi_1 = 0.99 \pm 0.14 \text{ (stat)} \pm 0.06(sys)$

asymmetry plot: all data

use: $B^0 \rightarrow D^{(*)-}\pi^+$, $D^{*-}\rho^+$, $D^{*-}l^+\nu$, $J/\psi K^*(K^+\pi^-)$

 $sin2\phi_1$ from various subsamples

If /?/ is allowed to float, (i.e. $a \cos(?m t) term$) $|\lambda| = 1.03 \pm 0.09$ $\sin 2\phi_1 = 0.99 \pm 0.14$

The CPV asymmetry is unchanged.

Vertex algorithm	±0.04
Flavor tagging	±0.03
Resolution function	±0.02
K _L background fraction	±0.02
Background shapes	±0.01
Δm_d and τ_{B0} errors	±0.01
Total	±0.06

• Introduction

- KEKB Accelerator and Belle Detector
- Observation of Large CP Violation
- Rare B Decays
- Conclusions

EM/EW Penguin : $\mathbf{B} \rightarrow \mathbf{K}_{\mathbf{x}} \gamma$, $\mathbf{B} \rightarrow \mathbf{K} l^+ l^-$

(2001 Lepton-Photon Conferences)

In addition to the observation of large CPV,

35 contributed papers (5 charm, 3 τ, 2 two-γ physics) [4 final results - sent to journal]

14 First Observations !

[see Web: http://belle.kek.jp/conferences/LP01-EPS for the datails of analyses and results]

Towards $|V_{ub}|$: $B^0 \rightarrow \pi l^+ \nu$

Important to check large $\sin 2\phi_1$

Towards $|V_{ub}|$: $B^0 \rightarrow Ds \pi$

CP Violation and Rare B Decays at Belle

Sep. 2001

• For sin2\oplus1 analysis

	candidates	purity	int. lumi.
$J/\psi Ks(\rightarrow \pi^+\pi^-)$	457ev.	97%	29.1fb ⁻¹
Other (cc) Ks	290ev.	84%	29.1fb ⁻¹
$J/\psi K_L$	569ev.	61%	29.1fb ⁻¹

 $\underbrace{\sin 2 \phi 1 = 0.99 \pm 0.14 \pm 0.06}_{\text{Combined}}$

• "Rare" decays

$\phi (\rightarrow K^+K^-) Ks$	10ev.	80%	21.3fb ⁻¹
η' K s	26ev.	63%	10.4fb ⁻¹
D*D ^(*)	27ev.	82%	21.3fb ⁻¹
Ks π^0	12ev.	67%	10.4fb ⁻¹

Penguin	Tree
$b \rightarrow s\bar{s}\bar{s}$	(uūs)
$b \rightarrow s\bar{u}u, s\bar{d}d$	uūs
$b \rightarrow$	ucd, ccd
$b \rightarrow d\bar{ds}$,	uūs, dds

CP eigenstates (or flavor non-specific states) with any other decay diagrams, such as the following;

<u> $B0 \rightarrow \eta' Ks$ </u> (10.4fb⁻¹)

Origin of the large branching fraction is not understood yet. It may include contribution from new physics !

 $B^{\theta} \rightarrow D^{*+}D^{(*)-} \Longrightarrow$

Full Reconstruction : better S/N

 $B0 \rightarrow D^{*+}D^{-}$ Confirm partial Recon.

Br=1.04 ±0.38±0.22 (x10-3)

 $B0 \rightarrow D^{*+}D^{*-}$

 $D^{*+} \rightarrow D^0 \pi^+ \text{ only}$ $\Rightarrow \text{ add } D^{*+} \rightarrow D^+ \pi^0 \text{ mode}$

Need angular anal. for ϕ_1

EW Penguin : $b \rightarrow s l^+ l^-$

Awaited mode sensitive to SUSY after $b \rightarrow s \gamma$ (consistent to SM)

Conclusions

• Large CPV in B decays !

$$sin2\phi_1 = 0.99 \pm 0.14 \pm 0.06$$

- 14 First Observations mainly on Rare B Decays
- ~80fb⁻¹ by Summer 2002 !
 - Precision measurements of $sin2\phi 1$
 - Vub, $\phi 2$ to constrain the Triangle
 - Mixing-induced CPV in penguin diagrams
 - Search for direct CPV
 - More rare decays

Exciting new results in the near future !