Charm pentaquark search

Leonid Gladilin (MSU) for the ZEUS Collaboration

DESY seminar, March 12, 2004

 $\Theta^+ = (ud)^2 \overline{s}$ seen by many experiments (and by ZEUS)

Yhat about $\Theta_c^0 = (ud)^2 \overline{c}$?

Introduction

Predictions:

Jaffe-Wilczek (hep-ph/0307341): $M(\Theta_c^0) = 2710 \text{ MeV}$ Wu-Ma (hep-ph/0402244): $\overline{m}(\Theta_c^0) = (4M(\Theta_c^0) + 2M(\Theta_c^0))/6 = 2704 \text{ MeV}$ $Such \Theta_c^0$ would be too light to decay to D mesons can decay weakly to $\Theta^{+}\pi^{-}$

Varliner-Lipkin (hep-ph/0307343): $M(\Theta_c^0) = 2985 \pm 50$ **MeV** $\Gamma(\Theta_c^0) \sim 21$ **MeV Varliner (hep-ph/0308176):** $M(\Theta_c^0) = 2938 - 295$ **MeV**

If $M(\Theta_c^0) > M(D^{*+}) + M(p) = 2948$ MeV, Θ_c^0 can decay to $D^{*-}p$ (+ c.c.) This decay mode can be dominant (Karliner-Lipkin, hep-ph/0401072)

Solution with the second of Θ_c^0 is a second of $W(D^{*+}D)$ of the second of $W(D^{*+}D)$ is the second of $W(D^{*+}D)$ is the second of $W(D^{*+}D)$ is the second of $M(D^{*+}D)$ i

Such Θ_c^0 would decay to D^-p (+ c.c.)

Procedure: $D^{*+} \rightarrow D^0 \pi^+_s \rightarrow (K^- \pi^+) \pi^+_s$ reconstruction

$$N(D^{*\pm}) = 42730 \pm 350$$

Burnary of cuts:
$$P_T(K) > 0.45 \, \text{GeV}, P_T(\pi) > 0.45 \, \text{GeV}$$
$$P_T(\pi_s) > 0.10 \, \text{GeV}$$
$$P_T(\pi_s) > 0.10 \, \text{GeV}$$
$$122$$
$$P_T(D^{*\pm})/E_T^{\text{out}\,10^\circ} > 0.12$$
$$1.90 \, \text{GeV} \text{ (wider for high } P_T(D^{*\pm})\text{)}$$

(yellow band) were used. In this range

 $0.1 > |(^{\pm *}U)\eta|$, $V^{9.2} \tilde{G}e.1 < (^{\pm *}U)_T q$

Vol $M T^{4/1} > M \Delta > M^{4/1}$ div solution

DATA 1995-2000 (126.5 pb⁻¹)

after background subtraction:

$$(\pi \lambda)M - (_s\pi\pi\lambda)M = M\Delta$$

Procedure: selection of *p* candidates

 $6.1 < xb/\exists b$ select protons $A_{2}B$ $\delta E.1 > 9$ div and require $dE/\exists b$ (1)

2) select protons with P > 2 GeV

In addition, require lower/upper limit from the proton dE/dx band tuned in the ZEUS non-charm pentaquark analysis

Procedure: proton dE/dx band

(V9Đ) q

sətsbibnes \overline{q}/q for $p/\overline{4b}$ candidates

 $\Lambda^0 \rightarrow p\pi$ from sec. vert.

 $0.3/P^2 + 0.8 < dEdx < 1.0/P^2 + 1.2$

Measured $M(D^*p)$ spectra

 $\mathcal{M}(D^{*}) = \Delta \mathcal{M}^{\mathrm{ext}} + \mathcal{M}(D^{*}) = \mathcal{M}(K\pi\pi_{s}) - \mathcal{M}(K\pi\pi_{s}) + \mathcal{M}(D^{*}) + \mathcal{M}(D^{*}) = \mathcal{M}(M^{*}) + \mathcal{M}(M^{*}) = \mathcal{M}(M^{*}) + \mathcal{M}(M^{*}) = \mathcal{M}(M$

mitully, no signal observed ...

Combinations / 10 MeV

Procedure: $D^{\pm\pm}$ in DIS with $Q^2 > 1 \operatorname{GeV}^2$

Charm fragmentation universality requires $f(c \rightarrow \Theta_c^0)$ to be the same in ep, γp , pp and other interactions Still it is useful to check DIS alone because it permits cleaner selection (smaller $W_{\gamma p} \Longrightarrow$ smaller multiplicities)

DATA 1995-2000 (126.5 pb⁻¹) $P_T(D^{*\pm}) > 1.35 \, GeV, \quad [\eta(D^{*\pm})] < 1.6$ $B_{e'} > 8 \, GeV, \quad Q^2 > 1 \, GeV^2$ signal is cleaner $Dut \sim 4.5 \, times \, smaller$ than in inclusive case

Measured $M(D^*p)$ spectra in DIS with $Q^2 > 1$ GeV²

 $\mathcal{M}(D^*P) = \Delta \mathcal{M}^{\text{ext}} + \mathcal{M}(D^{*+}) \mathcal{P}_{\text{DG}} = \mathcal{M}(K\pi\pi_s) - \mathcal{M}(K\pi\pi_s) + \mathcal{M}(D^{*+}) \mathcal{P}_{\text{DG}}$

... ift of guidton , nisgs

Combinations / 10 MeV

Systematic studies

"noitoeles 1H of eldissoq as esolo as" etus lla gnikam removing the cut on $P_T(D^{\pm *U})/E_{\text{out 10}^\circ}$; using $z(D^{\pm *U}) > 0.2$ instead $^{\pm\pi}\pi^{\pm*} d \leftarrow ^{**} d$ mort aroitoaffar gaivomar/gaightary between p direction in pd r.f. and bd direction in the lab require in addition $\cos \Theta \cos \Theta \cos \Theta \cos \Theta$, where $\Theta^* \Theta$ is the angle noitoeles q-dgin rot stnemeruper xb/Ab on varying dE/dx requirements for low-P selection selecting of DIS with $Q^2 > 1$ GeV² (was shown) or $Q^2 > 15$ GeV²

qu wons ton bib lengil

slangis bətəqxə to noitamitsə əviaN

we are not yet ready with the upper limit on

$$f(c \to \Theta_0^c) \times B(\Theta_0^c \to D^{*-} b)$$

:(anoits observations) algorithm of M_{1} (inspired by M_{1} observations):

$$\%1 \sim \frac{(\pm *G)_{\text{Del}}N}{(\pm *G)_{\text{O}} \oplus (\pm *G)} \sim 1\%$$

$$N^{\text{rec}}(P(p) > 2 \text{GeV}, dE, V, dE, V(p) > 1.35 \text{GeV}, dE, Vac(p) > 30\%$$

 $N^{\text{rec}}(P(p) > 2 \text{GeV}) \longrightarrow 0.0\%$

$$0 \wedge 0 \neq \sim \frac{1}{(q \text{ [ls]})^{\text{OF}}} N$$

([±]* G) N mori $\%$ 0.3% from $N(D^{\pm})$
([±]* G) N mori $\%$ 4.0 : noitoeles 7 -ngin

Naïve signal expectations

so large signals are excluded

Naïve signal expectations in DIS with $Q^2 > 1$ GeV²

so large signals are certainly not here

Summary

Using all HERA-I data (126.5 pb^{-1}), the ZEUS collaboration does not see any resonance structure in $M(D^*p)$ spectra

The NECTEd fats constrain the uncorrected fraction of $D^{*\pm}$ mesons originating from Θ_c^0 decays to be below 1%

Backup: $D^{\pm} \to K^{\pm} \pi^{\pm} \pi^{\pm}$ and $\Lambda^{c}_{\pm} \to K^{\pm} p^{\pm} \pi^{\pm}$.

$$N(D_{\mp}) = 6600 \pm 620$$

Backup: fragmentation fractions

(DIS) (DIS) (DIS)	bənidmoD e ⁺ e ⁻ data	$\begin{array}{l} \mathbf{DEUS} \mathbf{P}_{T}(D,\Lambda_{\mathrm{c}}) > 3.8 \mathbf{GeV}, \ \eta(D,\Lambda_{\mathrm{c}}) < 1.6 \\ P_{T}(D,\Lambda_{\mathrm{c}}) > 3.8 \mathbf{GeV}, \ \eta(D,\Lambda_{\mathrm{c}}) < 1.6 \end{array}$
$0.202 \pm 0.020_{-0.033}^{+0.045} \pm 0.020_{-0.033}^{+0.029}$	0.232 ± 0.010	$f(c \to D^+) = 0.249 \pm 0.014^{+0.004}_{-0.00}$
$^{80.0+711.0+}_{840.0-241.0-241.0-}$ 10.0 ± 830.0	0.549 ± 0.023	$ [f(c \to D^0) = 0.557 \pm 0.019^{+0.005}_{-0.01}] $
$0.156 \pm 0.043^{+0.036}_{-0.035} ^{+0.050}_{-0.046}$	000.0 ± 101.0	$300.0 \pm 200.0 \pm 701.0 = (^+_s U \leftarrow 5) f$
	∠00 [.] 0 ∓ 920 [.] 0	$f(c \to \Lambda_c^+) = 0.076 \pm 0.020_{-0.017}^{+0.017}$
$220.0 \pm 240.0 \pm 20.0 $	700.0 ± 352.0	$f(c \to D^{*+}) = 0.223 \pm 0.009^{+0.003}_{-0.005}$

charm eragmentation fractions are universal

we use correct normalisation for pQCD predictions

HERA measurements confirms universality

of charm fragmentation

Backup: search for radially excited $D^{*/\pm}$ meson

JATO Vd banistdo timil %0.0 and nant regronts taken

: $(^{+*}U \leftarrow \circ)$ tor solution average for $f(c \rightarrow D^{*+})$:

 $f(c \to D^{*\prime+}) \cdot B_{D^{*\prime+} \to D^{*+}\pi^+\pi^-} < 0.7\% \quad (95\% \quad C.L.)$

(.Ierus prel.)

 $V \circ M$ di > T

Backup: orbitally excited P-wave D mesons

Backup: charm-strange $D^{\pm}_{s1}(2536)$ uosəm

Combinations / 3.5 MeV

Backup: fragmentation fractions for excited D mesons

: $(^{+*}U \leftarrow \circ)$ tot of serve blow gaisU

	$\xi.1\pm7.4$	4.0 ± 0.1	DELPHI
$0.94 \pm 0.22 \pm 0.07$	0.1 ± 7.4	$\ddot{c}.0 \pm 0.1$	VLEPH
$5.0 \pm 4.0 \pm 0.1$	5.2 ± 2.6	2.1 ± 0.8	OPAL
	1.9 ± 0.1	5.0 ± 8.1	CLEO
$1.24 \pm 0.18^{+0.08}_{-0.06} \pm 0.14$	$14.0 \pm 0.58^{+1.40}_{-0.41} \pm 0.41$	$0.0 \pm \frac{33}{72.0-} 81.0 \pm 0.06$	ZEUS (prel.)
$f(c \to D^+_{s1}) \ [\%]$	$f(c \to D^{*0}_{*0}) \ [\%]$	$f(c \to D_0^{\mathrm{I}}) \ [\%]$	

steb q_2 has $\neg \varphi^+ \varphi$ in snosem U betizes to stanome since $\varphi^+ \varphi$.

2) situation with $f(c \rightarrow D_2^{*0})$ is not clear

: noitstoad as the expectation : $f(c \rightarrow D^+_{s1})$ is twice as large as the expectation :

 $\gamma_s \times f(c \rightarrow D_1^0) \approx 0.3 \times 2\% = 0.6\%$ Why?

Backup: trigger selection

First level trigger:

CAL-FLT: regional energy sums CTD-FLT: "tracks" looking to the nominal interaction point

DIS : scattered electron (and CTD-FLT) Untagged PhP : CTD-CAL and CTD-FLT

Tagged PhP : 44m and 35m taggers, CTD-CAL and CTD-FLT

Second level trigger:

DIS : scattered electron and CAL energies Untagged PhP : CAL energies and SLT tracks (high-W) Tagged PhP : 44/35m taggers, CAL energies and SLT tracks

Third level trigger:

Inclusive DIS : almost offline selection

 $D^{*\pm}$ in DIS : reconstructed $D^{*\pm}$ in DIS events (low Q^2)

Inclusive PhP : dijet events

stney
e \mathbf{PhP} : reconstructed $D^{\pm\pm}$ in tagged/untagged
 \mathbf{PhP} events