Combined probability (Method I)

- First set of 9 variables. This set is reasonable and well motivated, however is has been selected *a posteriori*. The bias of the *a posteriori* selection is discussed later. First we investigate the effect of correlations between kinematical variables with three different methods:
- ♦ Neglect correlations between variables; define Π = Π_i P_i Π_T = Π x ∑_{k=0}ⁿ⁻¹ (− ln Π)^k / k !
- ♦ The control sample has a probability $\Pi_{T} = 46\%$
- Events with a superjet have $\Pi_T = 1.6 \ 10^{-6}$ (4.8 sigma effect).
- ✤ Folding the η-distributions, Π_T= 4.5 10 ⁻⁶. The η- asymmetries do not drive the low Π_T value.

hep-ex/0109019

Combined probability (Method II)

- This method accounts for correlations
- Use about 3000 simulated events +
 - Non-W: use data with a superjet, MET > 20 GeV and I > 0.2 (12 events) or data with MET>20, I> 0.2, and one jet with a SECVTX tag and SLT taggable (165 events)
- Perform 10⁷ experiments each one with 8 2-jet and 5 3-jet events
- In each experiment, randomly extract each cross section σ_i using Gaussian uncertainties in the prediction of each cross section and then the corresponding number of events Ni including Poisson fluctuations.
- Then randomly extract Ni events from each simulation
- Compare the distributions of the 13 events to the templates using the usual K-S test and derive the product of probabilties Π.
- We find 16 events with a probability Π smaller than the data.

 $\Pi_{\rm C}$ = (1.6 ± 0.4) x10 ⁻⁶

Check using the data

- Use the control sample of data (42 events)
- ♦ The 13 events with a superjet have $\Pi^{1/9}=0.0345$
- ★ The probability that 13 different events extracted randomly from the control sample have a product of probabilities Π no larger than the data is $(1.4 \pm 0.4) \ge 10^{-6}$.
- Among these particular 42 events, it is hard to find a subsample of 13 events that disagrees with the SM simulation as much as the events with a superjet.
- The 42 events cannot contain more than 8 events with the same philum of superjet events.

Combined probability

✤ The combined probability depends on the estimate of the sample composition and its uncertainties. If we assume that events are all due to top quark production, $\Pi_T = 1.2 \times 10^{-5}$ for events with a superjet and $\Pi_T = 0.8 \times 10^{-2}$ for the control sample

Another reasonable choice

$\bigstar E_T^{-1} \quad \eta^1 \ E_T^{suj} \quad \eta^{suj} \ E_T^{-b} \quad \eta^b \quad M_T^{-W} \ E$

- This set of variables is less complete but more intuitive than our first choice
- We find $\Pi_{\rm T} = 7.4 \text{ x } 10^{-5}$ and $\Pi_{\rm C} = 2.5 \text{ x } 10^{-5}$

Combined probability (18 variables)

- we studied 18 variables before choosing 9 to characterize the difference between the data and the simulation.
- ★ Events with a superjet appear less anomalous when using the remaining variables: $\Pi_T = 1.9 \times 10^{-2}$ and $\Pi_C = 2.3 \times 10^{-2}$ for events with a superjet ($\Pi_T = 0.75$ for the complementary sample).
- remove the *a posteriori* bias using all 18 variables

♦
$$\Pi_c = (3.4 \pm 0.6) \times 10^{-5}$$
 (4.1 σ)

• $\Pi_{\rm T} = 6 \ge 10^{-7}$

Estimate of the production cross section

- Pending an obscure detector effect that is not visible in any other data samples.....or a very low probability statistical fluctuation
- The interpretation of the superjets in terms of new physics would require a low-mass, strongly interacting object, decaying semileptonically with a branching ratio of 1 and a lifetime of the order of a picosecond
- ✤ a light scalar bottom is a candidate (no limits)
- we assume $b_s \rightarrow c l v_s$ (pretending)
- plus the production of a massive state which decays to
 b b_s (pretending) in order to fit the tagging rates
- Patchwork, in absence of a suitable model

hep-ex/0109020

Matrix element

$$\frac{d\Gamma}{dz_c dz_l} = K[(1 - z_c)(1 - z_l) - R_{\tilde{\nu}} + R_c(z_c - z_l + R_{\tilde{\nu}} - R_c)]$$

Decay mediated by the higgsino right-handed coupling

$$z_c = rac{2p_{\tilde{b}} \cdot p_c}{m_{\tilde{b}}^2}$$
 and $z_l = rac{2p_{\tilde{b}} \cdot p_l}{m_{\tilde{b}}^2}$

 $2\sqrt{R_c} < z_c < 1 + R_c - R_{\tilde{\nu}}$

$$\frac{1+R_c-R_{\tilde{\nu}}-z_c}{1-[z_c-\sqrt{z_c^2-4R_c}]/2} < z_l < \frac{1+R_c-R_{\tilde{\nu}}-z_c}{1-[z_c+\sqrt{z_c^2-4R_c}]/2}$$

Decay mediated by the wino lefthanded coupling

$$\frac{d\Gamma}{dz_c dz_l} = K(z_c + z_l - 1 + R_{\tilde{\nu}} - R_c).$$

Difference with V-A decays

Use Herwig (spectator model)

Choice of the b b_s mass

Fit of the tagging rates

- with all SM process $+ b b_s$ production
- the top cross section and the rate of b b_s are unconstrained parameter of the fit
- the best fit yields $\chi^2=28$ for 29 d.o.f.
- it returns $\sigma_{tt}=4.0 \pm 1.5 \text{ pb}$ (42 events)
- 52 \pm 22.1 b b_s events

Observed and fitted tagging rates

SLT transverse momentum

the probability increases from 1% to 11.8%

Evaluation of the acceptance

- Use two method of increasing complexity:
- ♦ 1) W+Higgs simulation; the H is identified with the b b_s system; treat the W H production as a 2 → 3 hard scattering
- 2) an effective Lagrangian approach to model the data

WH simulation

weight the lepton polar angle distribution as $z^4 = cos^4 θ$ in the rest frame of the initial partons

Effective Lagrangian

$$u(p_1)+\overline{d}(p_2)
ightarrow e^+(p_l)+
u_s(k)+ar{b}(p_b)+b_s(p_s)$$

 $\phi_{\mu\nu}(x) = (1/\Lambda)^2 \partial_\mu \partial_\nu \phi(x) \text{ and } \tilde{\phi}_{\mu\nu} = (1/\Lambda)^2 \partial_\mu \partial_\nu \tilde{\phi}(x)$ scalar fields $\psi_l^{\mu\nu}(x) = (1/\Lambda)^2 \partial^\mu \partial^\nu \psi_l(x) \text{ and } \psi_h^{\mu\nu}(x) = (1/\Lambda)^2 \partial^\mu \partial^\nu \psi_b(x)$ b-quark and lepton fields $\chi^{\mu
u}_q(x) = (1/\Lambda)^2 \partial^\mu \partial^
u [rac{1+s_q}{2} \psi_u(x) + rac{1-s_q}{2} \psi_d(x)]$ initial state quark fields $\xi^{\mu
u}_q(x) = (1/\Lambda)^2 \partial^\mu \partial^
u [rac{1-s_q}{2} \psi_u(x) + rac{1+s_q}{2} \psi_d(x)]$ $(p_1 - p_2) \cdot p_l = s^{1/2} p_l^* \cos \theta$ $\mathcal{L}(x) = (rac{f}{\Lambda \, 10}) \partial_{\lambda} \{ \phi^{\dagger}_{lphaeta}(x) ilde{\phi}'_{\delta\phi}(x) \psi^{" au\sigma}_{~~b}(x) \} \gamma^{
ho} \partial^{\lambda} \{$ θ

$$\begin{split} |\mathcal{M}|^2 &= \left(\frac{f}{\Lambda^2}\right)^2 \frac{\hat{s}^{13}}{(\hat{s} + \Lambda_1^2)^{20}} \frac{(E_b \ E_l)^5 (k \ E_s)^4}{(\hat{s} - M^2)^2 + M^2 \Gamma^2} [1 - \cos \vartheta_l \ \cos \vartheta_b] \times \\ &(1 - \frac{2E_l}{\sqrt{\hat{s}}})^2 (1 - \frac{4E_l}{\sqrt{\hat{s}}})^2 \left[\cos \vartheta_l \ \sin \vartheta_b \ (\frac{1 - \cos \vartheta_k}{2}) (\frac{1 + \cos \vartheta_s}{2})\right]^4 \end{split}$$

 $\overleftrightarrow{\partial}^{\omega} \psi_{l}^{\mu\nu}(x) \overleftrightarrow{\partial}_{\omega} \left[(\partial_{\tau} \bar{\xi}_{a}^{\delta\phi}(x)) \gamma_{\rho} \overleftrightarrow{\partial}_{\mu} \overleftrightarrow{\partial}_{\nu} (\partial_{\sigma} \chi_{a}^{\alpha\beta}(x)) \right] \}$

Effective Lagrangian

- Beside being a patchwork, it can be seen as the Taylor expansion of an unknown interaction Lagrangian. We pick arbitrarily those terms which appear to be useful to model the events
- we need a lot of derivative couplings : composite structure, high spin
- we stabilize the *s*-behaviour with a form factor for each of the 20 derivatives
- ♦ plus a propagator (M= 350 and Γ = 5 GeV)

Acceptance and cross section

- The W H simulation yields a 9.1 % acceptance and the simulation using the effective Lagrangian yields a 10.8 % acceptance
- ✤ Averaging the two results, the corresponding cross section for producing events with a superjet is $\sigma = 5 \pm 2 \text{ pb}$
- ★ the size of the cross section for producing a final state with an invariant mass of about 350 GeV is typical of strong interactions, but it corresponds to $\Lambda = 10$ MeV in the effective Lagrangian
- hot line: 1 800 black hole

Complementary sample

X