Massive Black Holes & Galaxies Reinhard Genzel MPE Garching & UC Berkeley

high resolution infrared imaging and spectroscopy
the Galactic Center Black Hole
external galaxies and cosmological evolution

Quasars: stars or black holes ?

$E < 0.005 Mc^2$

radio source 3C 273

Schmidt, Lynden-Bell, Rees 1963-71

E≤0.4 Mc²

mass distribution

variable X- und γ radiation relativistic radio jets

NAOS/CONICA and SPIFFI at the VLT

SPIFFI/SINFONI: *PIs: F.Eisenhauer & N.Thatte (MPE)*

Precision determination of S2 orbit

Schödel et al. 2002, NATURE 419, 694 Schödel, et al. 2003, Ap.J. 596, 1015 Eisenhauer et al., Ap.J.Lett (astro-ph 0306220) Ghez et al. 2003, ApJ 586, L127, + astro-ph 0306130

S2 parameters	Eisenhauer	Ghez
	et al. 03	et al. 03
Offset R.A. (mas)	2.3±1.2	-2.7 ± 1.9
Offset Decl. (mas)	-3.1 ± 1.2	-5.4 ± 1.4
Central Mass $(10^6 M_{\odot})$	3.59±0.29(0.59)	3.99±0.3
Period (yr)	15.56 ± 0.35	15.02 ± 0.7
Pericenter Passage (yr)	2002.33±0.016	2002.33±0.013
Eccentricity	0.881 ± 0.007	0.876±0.006
Angle of line of nodes (deg)	45.0 ± 1.6	45.4±1.7
Inclination (deg)	-48.1 ±2.3	-46.4±1.7
Angle of node to pericenter	245.4 ± 1.7	247.1±2.3
Semi-major axis (mpc)	4.63 ± 0.10	4.63±0.17
Separation of pericenter (mpc)	0.551 ±0.010	0.573±0.025

7.94±0.42

Schödel et al., NATURE 2002, 419, 694; 2003, Ap.J. 596, 1015, Ghez et al. 2003, Ap.J. 586, L127, astro-ph 0306130, Eisenhauer et al. 2003, ApJ 597, L121

SgrA* does not move

VLBI: v(SgrA*)<10 (2) km/s diameter radio source <20 R_s (Backer, Reid et al. 1999, 2004)

 $M_{SgrA^*} > 10^5 M$

 $?_{SgrA*} > 10^{20.5} M pc^{-3} = 10^{-1.7} g cm^{-3}$

Reid et al. 1999, 2004, Chatterjee et al. 2002, Dorband et al. 2003

- low accretion rate
- low conversion efficiency to radiation
- low efficiency of removal of angular momentum

May 2002 campaign: ~0.6-1.2 flares/day

Baganoff et al. 2000, 2001,2003, Porquet et al. 2003, Aschenbach et al. 2004, Yusef-Zadeh, Zhao et al. 2000, 2003, Aitken et al. 99, Bower et al. 2003

Infrared flares & BH spin

May 09, 2003: NACO (VLT) H-band, 40 mas resolution (adaptive optics), 1 min per image

Quasi-periodic oscillations

Genzel et al. 2003, Nature 425, 934

Fundamental dynamical frequencies around a black hole

Kerr MHD accretion disk simulation

De Villers, Hawley & Krolik, 2003, astroph 0307260

Black Holes in the Local Universe

Miyoshi et al. 1995, Kormendy & Richstone 1995, Gebhardt et al. 2000, Merritt und Ferrarese 2000, Tremaine et al. 2002

Relativistic accretion disks

Tanaka, Nandra et al 1997-99 Fabian et al. 2002

Black Holes & Galaxy Formation

Formation of Quasars

VIRGO Consortium (MPA), White e al.1987-2002, Springel 2001 Binary black hole: Komossa & Hasinger 2003

The future

• interferometry: relativistic regime

- submm VLBI: detection of event horizon
- simultaneous radio to ?-emission : accretion flow
- TeV emission: dark matter spike?
- z~10 QSOs and galaxies

