Lepton Universality and τ Lepton Mass Measurement

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

- 1. τ lepton and lepton universality
- 2. τ mass at KEDR
- 3. τ mass at Belle
- 4. Conclusions

S.Eidelman, BINP

General

- During last two decades Standard Model (SM) successfully survived a lot of different tests
- First checked with electrons and muons, SM tests should also involve τ leptons
- τ lepton may decay into both leptons and hadrons, we can study all interactions allowed in the SM and search for effects of New Physics
- One of the SM intrinsic features is flavor independence of the Fermi constant, $G_{\rm F}$
- B factories are a unique and extremely copious source of $\tau^+\tau^-$ pairs providing about 0.9×10^6 events per 1 fb⁻¹

Lepton Universality in Leptonic Decays – II

$$r = \left(\frac{G_{\tau}}{G_{\mu}}\right)^{2} = \left(\frac{G(\tau^{-} \to e^{-}\nu_{\tau}\bar{\nu}_{e})}{G(\mu^{-} \to e^{-}\nu_{\mu}\bar{\nu}_{e})}\right)^{2} = \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \left(\frac{t_{\mu}}{t_{\tau}}\right) \mathcal{B}(\tau \to e\nu_{\tau}\bar{\nu}_{e}) \frac{F_{\rm cor}(m_{\mu}, m_{e})}{F_{\rm cor}(m_{\tau}, m_{e})}$$

Correction	μ	au
$f(m_e^2/m_L^2)$	0.9998	1.0000
$F_{ m W}(m_L)$	1.0000	1.0003
$F_{\rm rad}(m_L)$	0.9958	0.9957
Total	0.99558	0.99597

Lepton universality $\Rightarrow r = 1$

Two Methods of m_{τ} Measurement

• Energy dependence of $\sigma(e^+e^- \to \tau^+\tau^-)$ near threshold

 $\sigma_0 = \sigma(e^+e^- \to \tau^+\tau^-) = 86.85 \text{ (nb)/s(GeV^2)} \sqrt{1 - 4m_\tau^2/s} (1 + 2m_\tau^2/s).$

First used by DELCO in 1978

• Pseudomass

Reconstruction of the invariant mass and energy of the hadronic system in hadronic τ decays

Suggested and first used by ARGUS in 1992

History of m_{τ} Measurements

$m_{ au}, { m MeV}$	$N_{ m ev}$	Group	\sqrt{s}, GeV	Method
1783^{+3}_{-4}	692	DELCO, 1978	3.1 - 7.4	σ
$1776.3 \pm 2.4 \pm 1.4$	11k	ARGUS, 1992	9.4 - 10.6	P/m
$1776.96\substack{+0.18+0.25\\-0.21-0.17}$	65	$\operatorname{BES}, 1996$	3.54 - 3.57	σ
$1778.2 \pm 0.8 \pm 1.2$	98.5k	$\operatorname{CLEO}, 1997$	10.6	P/m
$1775.1 \pm 1.6 \pm 1.0$	13.3k	OPAL, 2000	~ 90	P/m
$1776.99\substack{+0.29\\-0.26}$		PDG, 2006		

Test of Lepton Universality in Leptonic Decays

$$r = \left(\frac{G_{\tau}}{G_{\mu}}\right)^2$$

r	$t_{ au},~{ m fs}$	$\mathcal{B}(\tau \to e \nu_{\tau} \bar{\nu}_e), \%$	$m_{ au}, { m MeV}$	Comments
0.9405	305.6 ± 6.0	17.93 ± 0.26	$1784.1_{-3.6}^{+2.7}$	$\mathrm{PDG}, 1992$
± 0.0249	± 0.0185	± 0.0136	$+0.0071 \\ -0.0095$	-2.4σ
0.9999	291.0 ± 1.5	17.83 ± 0.08	$1777.0\substack{+0.30\\-0.27}$	PDG, 1996
± 0.0069	± 0.0052	± 0.0045	± 0.0008	-0.01σ
1.0020	290.6 ± 1.1	17.84 ± 0.06	$1776.99\substack{+0.29\\-0.26}$	PDG, 2004
± 0.0051	± 0.0038	± 0.0034	± 0.0008	$+0.4\sigma$

S.Eidelman, BINP

Physics at VEPP-4M

- \sqrt{s} from 2 to 11 GeV
- Originally designed for *b* quark physics is now running in the charmonium region
- $L_{\rm max} = 2 \times 10^{30} \ {\rm cm}^{-2} {\rm s}^{-1}$ at 1.78 GeV
- Properties of ψ family states, 2γ physics
- High-precision mass measurements (J/ψ, ψ(2S), τ) based on two independent methods of energy determination: Resonant depolarization for absolute calibration (slow) Compton backscattering of laser 0.12 MeV photons (fast)

Resonant Depolarization – I

Usual NMR based absolute energy determination $-3 \cdot 10^{-4}$ Resonant depolarization suggested at BINP in 1975 gives at least an order of magnitude better precision In a storage ring with a flat orbit: $\Omega/\omega_0 = 1 + \gamma \cdot \mu'/\mu_0$, Ω – spin precession frequency, ω_0 – revolution frequency,

 μ'/μ_0 – the ratio of the anomalous (normal) parts of emm known with an accuracy of 10^{-9}

The average ω_0 is determined by the RF frequency of the guiding field and can be set and determined with high accuracy Ω is measured at the moment of depolarization by the external electromagnetic field with a frequency ω_d : $\omega_d \pm \Omega = k\omega_0$

Resonant Depolarization – II

Since 1975 has been successfully used to determine masses of various particles: K^{\pm} , ω , ϕ , J/ψ , $\psi(2S)$, $\Upsilon(3S)$ at BINP, $\Upsilon(1S)$ at BINP and Cornell, $\Upsilon(2S)$ at BINP and DESY, Z at CERN Also used at various SR facilities

State	Mass, MeV/c^2	$\Delta m/m$	Factor
ϕ	1019.455 ± 0.020	$2.0 \cdot 10^{-5}$	25
J/ψ	3096.916 ± 0.011	$3.6 \cdot 10^{-6}$	90
$\Upsilon(1S)$	9460.30 ± 0.26	$2.7 \cdot 10^{-5}$	50
Ζ	91187.6 ± 2.1	$2.3 \cdot 10^{-5}$	60

Resonance Depolarization – III

- The beams get polarized at $E_{\text{beam}} = 1772 \text{ MeV}$, the polarization lifetime is $\leq 1000 \text{ s}$, the polarized beam is injected to VEPP-4M, 10 minutes later an unpolarized beam is added as a second bunch
- Touschek (intrabeam scattering) effect is used to detect the moment of depolarization; the cross section of polarized electrons is smaller than that for unpolarized particles
- The transverse wave with the magnetic field perpendicular to the polarization is used as a depolarizer, the depolarization time is about 2 s
- The counting rate of the polarimeter is 1 MHz at beam currents of 2-4 mA
- The process of RD energy calibration lasts about 2 hours and is performed once a day, more than 1500 calibrations were performed since 2002

Typical RD Run at VEPP-4M

The resonant depolarization (RD) once a day with $\sigma_E < 20$ keV

A carbon dioxide laser is used, $\lambda = 10.591 \ \mu m \ (\omega_0 = 0.117 \ eV)$ $\omega_{max} = 1-7 \ MeV, \ \Delta \omega_0 / \omega_0 = 10^{-7}, \ cont. \ power \ of 30 \ W$

A High Purity Germanium (HPG) detector, $V_{act} = 120 \text{ cm}^3$, $\epsilon = 5\%$ at 6 MeV, internal resolution $(0.6 + 0.2\omega \text{[MeV]})$ keV, the pile-up noise is (1-3) keV HPG calibrated with γ sources in the 0.5-2.7 MeV range and extr. to ω_{max}

Typical CBS Spectrum Edge at VEPP-4M

Between the RD, the Compton backscattering (CBS) with $\sigma_E \approx 100 \text{ keV}$

S.Eidelman, BINP

p.16/41

During the run, E measured by CBS, then interpolation

S.Eidelman, BINP

KEDR Detector

- 1) Vacuum chamber, 2) Vertex detector,
- 3) Drift chamber, 4) Aerogel counters,
- 5) ToF-counters, 6) LKr calorimeter,
- 7) Superconducting coil, 8) Magnet yoke,
- 9) Muon tubes, 10) CsI calorimeter,
- 11) Compensation solenoid,
- 12) VEPP–4M quadrupole

m_{τ} at KEDR: Summary of the scan

Point	$\langle E \rangle$, MeV	$\int Ldt$, nb ⁻¹	$N_{\tau\tau}$	$\sigma_{\tau\tau}^{\rm obs},{\rm pb}$
1	1771.945 ± 0.160	668	0	$0.0\substack{+2.8 \\ -0.0}$
2	1776.408 ± 0.086	1382	1	$0.7\substack{+1.7 \\ -0.6}$
3	1776.896 ± 0.045	1605	6	$3.7^{+2.2}_{-1.5}$
4	1777.419 ± 0.061	1288	4	$3.1^{+2.5}_{-1.5}$
5	1782.103 ± 0.060	283	4	$14.1^{+11.3}_{-6.8}$
6	1792.457 ± 0.102	233	3	$12.9^{+12.5}_{-7.1}$
7	1837.994 ± 0.092	305	14	$45.8^{+16.0}_{-12.2}$
8	1843.040 ± 0.065	807	79	97.9 ± 11.0
9	1888.521 ± 0.228	967	49	50.7 ± 7.2
Total	Without $\psi(2S)$	6731	81	

S.Eidelman, BINP

S.Eidelman, BINP

p.21/41

m_{τ} at KEDR: Systematic Uncertainties – I

- Interpolation takes into account guiding field measurements, ring and tunnel temperature variations 40 keV
- Detector efficiency variations (MC model, selection criteria, performance of subsystems) 100 keV
- Beam energy spread (from $\sigma_W(J/\psi)$ and $\sigma_W(\psi(2S))$ and assuming linear growth $\sigma_W(2m_\tau) = (1.07 \pm 0.02 \pm 0.04)$ MeV) – 25 keV
- $\bullet\,$ Background (variation of shape, possible energy dependence) 20 keV
- $\bullet~$ Instability of luminosity measurement (comparison of LKr and CsI) $-~90~{\rm keV}$
- Calculation of $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ (rad. corrections, interference) 30 keV

m_{τ} at KEDR: Systematic Uncertainties – II

Source	$\sigma, \mathrm{keV}/c^2$
Beam energy	40
Detection efficiency	100
Energy spread accuracy	25
BG energy dependence	20
Luminosity measurement	90
Energy spread variation	15
Cross section	30
Total	150

 $m_{\tau} = 1776.81^{+0.25}_{-0.23} \pm 0.15 \text{ MeV}/c^2$ V.V. Anashin et al., JETP Letters 85, 347 (2007)

KEKB and Belle Detector

- 3.5 GeV $e^+ \times 8.0$ GeV e^-
- $\mathcal{L}_{\rm max} = 1.71 \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
- Continuous injection $\rightarrow 1.2 \, \mathrm{fb}^{-1}/\mathrm{day}$
- $\int \mathcal{L} dt pprox 852 \, \mathrm{fb}^{-1}$

- Sil.VD: 3(4) layers DSSD
- CDC : small cells $He + C_2H_6$
- TOF counters
- Aerogel CC: $n = 1.015 \sim 1.030$
- CsI(Tl) 16 X_0
- SC solenoid 1.5 T
- μK_L detection 14-15 layers RPC+Fe

m_{τ} at Belle: Pseudomass

- 414 fb⁻¹ or $370 \times 10^6 \tau^+ \tau^-$ pairs
- ~ $5.8 \cdot 10^6$ events $\tau^- \to \pi^+ \pi^- \pi^- \nu_\tau$
- $p_{\tau} = p_X + p_{\nu} \Rightarrow m_X^2 + m_{\nu}^2 + 2(E_X E_{\nu} |\vec{p}_X| |\vec{p}_{\nu}| cos\theta)$

•
$$m_{\nu} = 0, \ |\vec{p}_{\nu}| = E_{\nu} = E_{\tau} - E_X$$

 $m_{\tau}^2 = m_X^2 + 2(E_{\tau} - E_X)(E_X - |\vec{p}_X| \cos\theta)$
 $m_{\tau}^2 \ge m_{\min}^2 = m_X^2 + 2(E_{\text{beam}} - E_X)(E_X - |\vec{p}_X|).$

• The empirical edge function: $f(m_{\min}) \sim (a_1 + a_2 m_{\min}) \tan^{-1} (m_{\min} - a_3)/a_4 + a_5 + a_6 m_{\min}$ a_3 is a τ mass estimator

S.Eidelman, BINP

p.27/41

DESY, Hamburg

m_{τ} at Belle: Systematic Uncertainties – I

- E_{beam} is calibrated run by run using the beam-energy constrained mass of reconstructed *B* mesons. Its uncertainty of 1.5 MeV (Δm_B , tracking, $\Gamma_{\Upsilon(4S)}$) gives $\Delta m_{\tau} = 0.26 \text{ MeV}$
- Momentum resolution (comparing MC and data on $e^+e^- \rightarrow \mu^+\mu^-) 0.02~{\rm MeV}$
- Choice of the edge parameterization gives 0.18 MeV: $f_1(m_{\min}) = (a_1 + a_2 m_{\min}) \frac{m_{\min} - a_3}{\sqrt{a_2 + (m_{\min} - a_1)^2}} + a_5 + a_6 m_{\min},$ $f_2(m_{\min}) = (a_1 + a_2 m_{\min}) \frac{-1}{1 + exp[(m_{\min} - a_3)/a_4]} + a_5 + a_6 m_{\min}$
- Variation of the fit range (1.72 1.80) GeV gives a shift of 0.04 MeV
- Variation of m_{a_1} and Γ_{a_1} in the ± 300 MeV range: model dependence of the 3π spectrum yields a shift < 0.02 MeV
- Backgrounds (misID τ decay, non- $\tau^+\tau^-$, ISR/FSR) \Rightarrow a shift < 0.01 MeV
- A change of m_{ν} from 0 to 10 MeV gives a shift by -0.1 MeV

m_{τ} at Belle: Systematic Uncertainties – II

Source	σ , MeV/ c^2
Beam energy and tracking	0.26
Edge parameterization	0.18
MC statistics	0.14
Fit range	0.04
Momentum resolution	0.02
Model of $\tau \to 3\pi\nu_{\tau}$	0.02
Background	0.01
Total	0.35

 $m_{\tau} = (1776.61 \pm 0.13 \pm 0.35) \text{ MeV}$

 m_{τ^+} and m_{τ^-} at Belle

CPT test by m_{τ^+} vs. m_{τ^-} : $\Delta m = m_{\tau^+} - m_{\tau^-} = 0.05 \pm 0.23 \pm 0.14 \text{ MeV}$

Group	OPAL, 2000	Belle, 2006	
$N_{ au^+ au^-}, 10^3$	160	370k	
$ \Delta m /m_{ au}$	$< 3.0 \times 10^{-3}$	$< 2.8 \times 10^{-4}$	

K. Belous et al., Phys. Rev. Lett. 99, 011801 (2007)

S.Eidelman, BINP

p.30/41

Progress of m_{τ}			
Group	$m_{ au},{ m MeV}$		
BES, 1996	$1776.96\substack{+0.18+0.25\\-0.21-0.17}$		
PDG,2006	$1776.99\substack{+0.29\\-0.26}$		
KEDR, 2006	$1776.81^{+0.25}_{-0.23}\pm0.15$		
Belle, 2006	$1776.61 \pm 0.13 \pm 0.35$		
PDG, 2008	1776.84 ± 0.17		

KEDR continues running to increase a data sample and decrease systematics Belle has the best statistical error, but limited by systematic effects

m_{τ} at KEDR: 2008 preliminary

Year	2006	2008	
$\int L dt$, pb ⁻¹	6.7	14.3	
$N_{\rm ev}$ at thr.	11	26	
$m_{ au},{ m MeV}$	$1776.81^{+0.25}_{-0.23}\pm0.15$	$1776.69^{+0.17}_{-0.19}\pm0.15$	

The goal is to reach a total error of $0.15~{\rm MeV}$

au Lepton Lifetime

Source	$N_{ au au}, 10^3$	$ au_{ au},\mathrm{fs}$	$\delta au_{ m sys},\%$
DELPHI, 2004	150	$290.9 \pm 1.4 \pm 1.0$	0.34
PDG, 2008	_	290.6 ± 1.0	0.28
BaBar, 2004	79000	$289.40 \pm 0.91 \pm 0.90$	0.31

- Measurement bias -0.220%
- Background -0.142%
- Alignment 0.111%
- au momentum 0.100%
- Total -0.310%

We can hopefully expect improvement in τ_{τ} from LHC

τ Leptonic Branching

Measurements of $B_{\rm e}, \%$

Source	$N_{ au au}, 10^3$	B,%	$\delta B_{ m sys},\%$
ALEPH, 2005	56	$17.837 \pm 0.072 \pm 0.036$	0.2
CLEO, 1997	3250	$17.76 \pm 0.06 \pm 0.17$	1.0
$\mathrm{PDG},2008$	_	17.85 ± 0.05	0.28

Systematic uncertainties in CLEO, %

$N_{\rm ev}$	$N_{\tau\tau}$	ϵ	Trig.	PID	BG	Total
0.36	0.71	0.48	0.28	0.19	0.16	1.00

2008 Test of Lepton Universality

- After 23 years the MuLan group at PSI recently improved the μ⁺ lifetime by a factor of 3.5 (D.B. Chitwood et al., Phys. Rev. Lett. 99, 032001 (2007)). The improved PDG-08 τ_μ = (2.197019 ± 0.000021) μs
- The unchanged PDG-08 $B_{\rm e} = (17.85 \pm 0.05)\%$
- The unchanged PDG-08 $\tau_{\tau} = (290.6 \pm 1.0)$ fs
- The improved PDG-08 $m_{\tau} = (1776.84 \pm 0.17) \text{ MeV}$
- $r = 1.0030 \pm 0.0045 \ (0.67\sigma) \Rightarrow$ Leptonic universality is OK!

Do We Need a Higher m_{τ} Precision?

• We should know masses of fundamental particles with high precision

Particle	Mass, MeV	σ_m/m
e	$0.510998910 \pm 0.000000013$	$2.5 \cdot 10^{-8}$
μ	$105.6583668 \pm 0.0000038$	$3.6 \cdot 10^{-7}$
au	1776.84 ± 0.17	$9.6 \cdot 10^{-5}$

• Is 1981 Koide formula pure numerology?

$$\frac{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2}{(m_e + m_\mu + m_\tau)} = 1.4999973^{+0.0000395}_{-0.0000304}$$

Lepton Universality in Hadronic Decays – I

$$\Gamma(\tau \to \pi \nu_{\tau}) = \frac{G_F^2 f_{\pi}^2 cos^2 \theta_C}{16\pi} m_{\tau}^3 (1 - m_{\pi}^2 / m_{\tau}^2)^2,$$

$$\Gamma(\pi \to \mu \nu_{\mu}) = \frac{G_F^2 f_{\pi}^2 cos^2 \theta_C}{8\pi} m_{\pi} \ m_{\mu}^2 (1 \ - \ m_{\mu}^2 / m_{\pi}^2)^2$$

$$\frac{\mathcal{B}(\tau \to \pi \nu_{\tau})}{\mathcal{B}(\pi \to \mu \nu_{\mu})} = \frac{m_{\tau}^3 (1 - m_{\pi}^2 / m_{\tau}^2)^2}{2m_{\pi} m_{\mu}^2 (1 - m_{\mu}^2 / m_{\pi}^2)^2} \frac{\tau_{\tau}}{\tau_{\pi}}$$

S.Eidelman, BINP

Lepton Universality in Hadronic Decays – II

For $\Gamma(\tau \to K \nu_{\tau})$ similarly, but $f_{\pi} \to f_{\mathrm{K}}$ and $\cos \theta_{C} \to \sin \theta_{C}$:

$$\frac{\mathcal{B}(\tau \to K \nu_{\tau})}{\mathcal{B}(K \to \mu \nu_{\mu})} = \frac{m_{\tau}^3 (1 - m_{\rm K}^2 / m_{\tau}^2)^2}{2m_{\rm K} \ m_{\mu}^2 (1 - m_{\mu}^2 / m_{\rm K}^2)^2} \frac{\tau_{\tau}}{\tau_{\rm K}}$$

Mode	${\cal B}^{ m (th)}$	$\mathcal{B}^{(ext{exp})}$	
$ au o \pi u_ au$	$(10.87 \pm 0.05)\%$	$(11.08 \pm 0.13)\%$	
$ au o K u_ au$	$(7.08\pm0.04)\cdot10^{-3}$	$(7.1\pm0.5)\cdot10^{-3}$	

Charged Current Universality – I

A. Pich, April 2008:

 $|G_{\mu}/G_{e}|$

$\mathcal{B}(\tau \to \mu) / \mathcal{B}(\tau \to e)$	1.0000 ± 0.0020
$\mathcal{B}(\pi \to \mu) / \mathcal{B}(\pi \to e)$	1.0021 ± 0.0016
$\mathcal{B}(K \to \mu) / \mathcal{B}(K \to e)$	1.004 ± 0.007
$\mathcal{B}(K \to \pi \mu) / \mathcal{B}(K \to \pi e)$	1.002 ± 0.002
$\mathcal{B}(W \to \mu) / \mathcal{B}(W \to e)$	0.997 ± 0.010

Charged Current Universality – II

 $|G_{\tau}/G_e|$

${\cal B}(au o \mu) au_{\mu}/ au_{ au}$	1.0005 ± 0.0023
$\mathcal{B}(W \to \tau) / \mathcal{B}(W \to e)$	1.036 ± 0.014

 $|G_{ au}/G_{\mu}|$

$\mathcal{B}(\tau \to e)\tau_{\mu}/\tau_{\tau}$	1.0006 ± 0.0022
$\Gamma(\tau \to \pi) / \Gamma(\pi \to \mu)$	0.996 ± 0.005
$\Gamma(\tau \to K) / \Gamma(K \to \mu)$	0.979 ± 0.017
$\mathcal{B}(W \to \tau) / \mathcal{B}(W \to \mu)$	1.039 ± 0.013

S.Eidelman, BINP

Conclusions

- Better accuracy of m_{τ} after KEDR and Belle measurements
- $|G_{\tau}/G_{\mu}|$ improved
- Further progress impossible without improving τ_{τ} and $\mathcal{B}(\tau^- \to e^- \nu_{\tau} \bar{\nu}_e)$
- Universality of charged current checked using τ , π , K and W decays $\Gamma(W \to \tau)$ too big?
- Tests with τ are among the most precise, B factories help

Backup Slides

τ Lepton Factories

Group	$\int L dt$, fb ⁻¹	$N_{\tau\tau}, 10^{6}$
LEP (Z-peak)	0.34	0.33
CLEO (10.6 GeV)	13.8	12.6
BaBar (10.6 GeV)	384	350
Belle (10.6 GeV)	543	490
au-c (4.2 GeV)	10	32
SuperB	50k	45k

BaBar (~ 530 fb⁻¹) and Belle (~ 850 fb⁻¹) collected together about 1.4 ab⁻¹ B-factory is also a τ factory producing $0.9 \cdot 10^6 \tau^+ \tau^-$ pairs per each fb⁻¹!!

p.44/41

Above the ρ meson e^+e^- spectral functions are lower than in τ decays

The branching from all groups is systematically higher than the CVC prediction: $\mathcal{B}_{\tau} - \mathcal{B}_{ee} = (0.92 \pm 0.21)\%$ or 4.5σ from 0. The discrepancy is a 3.6% effect, about twice the SU(2) correction. The puzzle remains unsolved $\Rightarrow \tau$ data not used M. Benayoun, arXiv:0711.4482: no conflict with consistent SU(2) breaking

Theory vs Experiment – I

Contribution	$a_{\mu}, 10^{-10}$
Experiment	11659208.0 ± 6.3
QED	11658471.8 ± 0.016
Electroweak	$15.4 \pm 0.1 \pm 0.2$
Hadronic	693.1 ± 5.6
Theory	11659180.3 ± 5.6
Exp.–Theory	$27.7 \pm 8.4 \ (3.3\sigma)$

The difference between experiment and theory is $3.3\sigma!$ (K.Hagiwara et al., PLB 649,173(2007)) claim even 3.4σ while F.Jegerlehner,2008 – 2.8σ)

Theory vs Experiment – II

S.Eidelman, BINP