Preview of new ZEUS results for ICHEP04

Massimo Corradi, INFN Bologna

45 Papers sent to ICHEP04:

- 15 published articles
- 14 Prel. results released for other conferences (incl. DIS04)
- 18 New results 3 of which from HERA-II data

Summary:

- Polarized CC and NC
- PDFs and α_S
- Jets and Hadronic final states
- Diffraction
- Heavy Flavours
- Searches for new physics
- Pentaquarks

Polarized Charged Currents

Polarized Charged Currents

• No hint for right-handed charged currents

Polarized Neutral Currents

Polarized Neutral Currents

ZEUS

•
$$\frac{\sigma(P=+32\%)}{\sigma(P=0)}$$
 vs Q^2

•
$$\frac{\sigma(P=-40\%)}{\sigma(P=0)}$$
 vs Q^2

•
$$\frac{\sigma(P=+32\%)}{\sigma(P=-40\%)}$$
 vs Q^2

- $\bullet \ \sigma(e_R^+) > \sigma(e_L^+)$ at large Q^2
- Parity violation in neutral currents
- Agreement with SM

α_S and PDFs from QCD Fit

- ZEUS-jets- α_S fit (prel.)
- Use ZEUS data only:
 - NC and CC DIS
 - inclusive jets (Breit frame) in DIS
 - dijets in PhP
- \bullet jet data help fixing g(x) at mid-high x
- Simultaneous determination of α_S and PDFs in 1 experiment
- $\alpha_S(M_Z) = 0.1183 \pm 0.0028(\text{exp.}) \pm 0.0008(\text{model})$ Theoretical uncertainty ~ 0.005
- Uncertainty on g(x) larger than fit with constrained α_S

α_S from 3/2 jets ratio in DIS

- 98-00 data (82 pb⁻¹)
- $\bullet \ 10 < Q^2 < 5000 {\rm GeV^2}$
- Breit Frame 2,3-jet events with $E_{T,B}^{jet} > 5 \text{GeV}, -1 < \eta_{LAB}^{jet} < 2.5, M_{2j,3j} > 25 \text{GeV}$
- α_S from 3/2 jet ratio
- α_S measured down to $Q^2 = 25 \text{GeV}^2$
- using ratios reduces both syst. and theo. uncertainties

 $\alpha_S(M_Z) = 0.1179 \pm 0.0013 (\text{stat.})^{+0.0028}_{-0.0046} (\text{exp.})^{+0.0061}_{-0.0040} (\text{theo.})$

Summary of α_S from ZEUS

Very forward inclusive jets in DIS

- Jets up to $\eta = 3.5$ using the FPC
- 98-00 data (82 pb⁻¹)
- $20 < Q^2 < 100 \text{GeV}^2$, 0.04 < y < 0.07, 0.0004 < x < 0.005
- Breit frame jets boosted to lab $E_T^{jet} > 5$ GeV, $2 < \eta^{jet} < 3.5$
- to enhance low x effects: $x_{jet} = p_z^{jet}/P_p > 0.036, \ 0.5 < (E_T^{jet})^2/Q^2 < 2$
- Comparison with MC models:
 - Lepto SCI too low
 - ARIADNE describes the data well
 - $\operatorname{Cascade} \operatorname{\mathbf{shape}} \operatorname{\mathbf{not}} \operatorname{\mathbf{OK}}$

Event Shapes in DIS

- Events with 2 jets in Breit frame $K_{OUT} = \sum_{i} p_{i}^{out}$ p_{i}^{out} is the hadron momentum outside the dijet plane
- 98-00 data (82 pb⁻¹)
- $Q^2 > 100 \text{GeV}^2$, 0.0024 < x < 0.6
- LO $(O(\alpha_S^3))$ + NLL + PC theory does not describe K_{OUT}/Q NLO needed to fit α_S , α_0

Charged particle multiplicities in DIS

Current region

 $2\langle n_{ch}\rangle$ vs $2E_{\text{current}}$

Target region $\langle n_{ch}^{vis} \rangle$ vs M_{eff}^{vis}

vis. mult. > than current region agreement with Ariadne

Three-jet photoproduction and colour dynamics

Agreement with Pythia and LO calculation for SU(3), U(1), disfavour SU(N \gg 1), C_F=

DGLAP fit of Inclusive diffraction

- New paper with QCD analysis of $F_2^{D(3)}$ and $F_2^{D(3),c\bar{c}}$
- Assume Regge factorization $F_2^{D(3)}(\beta, Q^2, x_{I\!\!P}) = f_{I\!\!P}(x_{I\!\!P})F_2^{I\!\!P}(\beta, Q^2)$ $f_{I\!\!P}(x_{I\!\!P})$ from Donnachie-Landshoff
- \bullet DGLAP fit of $F_2^{I\!\!P}(\beta,Q^2)$
- Data:
 - $\begin{array}{l} \ F_2^{D(3)} \ {\bf from \ LPS \ data} \\ Q^2 > 2 {\bf GeV}^2, \ x_{I\!\!P} < 0.01 \\ \ F_2^{D(3),c\bar{c}} \ {\bf from \ diffractive \ D^*} \end{array}$
- good fit
- not enough precision for PDF determination
- Momentum fraction carried by gluons: $\int dx \, xg_{\mathbb{P}}(x, Q^2) = \left(82 \pm 8(\text{stat.})^{+15}_{-16}(\text{syst.})\right)\%$ (at $Q^2 = 2\text{GeV}^2$)

 $\sim 1/3$ of $F_2^{D(3)}$ from charm at low $\beta,$ high Q^2

Diffractive dijet photoproduction

- Sensitivity to gluon
- RG suppression in γp as in $p\bar{p}$?
- 99-00 ZEUS data (77.6 pb⁻¹)
- $E_T > 7.5, 6.5 \text{GeV}, -1.5 < \eta < 2, x_{I\!\!P} < 0.035$
- Compare with NLO (PDF: H1 2002 fit prel.)
- NLO shape OK normalization $\sim 2 \times$ too high
- Data do not support a suppression of the resolved part only (R = 0.34)

Exclusive dipion production $ep \rightarrow e\pi^+\pi^-p$

- $ep \rightarrow e' \pi^+ \pi^- p$
- 1999-2000 data (66 pb⁻¹)
- $2 < Q^2 < 20$ GeV², $1.2 < M_{\pi\pi} < 5$ GeV, 40 < W < 120GeV
- hadronic Light Cone Wave Function $|\gamma\rangle = a|\gamma_p\rangle + b|l^+l^-\rangle + d|q\bar{q}\rangle + \dots$ $(E+p_{q\ell}) + b|q\bar{q}\rangle + \dots$
- $u = \frac{(E+p_{Z'})_{\pi^+}}{(E+p_{Z'})_{\pi^+} + (E+p_{Z'})_{\pi^-}}$ (Z'=direction of $\pi\pi$ system) reflects the momentum share in $|q\bar{q}\rangle$
- $1/\sigma \, d\sigma/dM_{\pi\pi} \sim M_{\pi\pi}^{-4.5}$
- $d\sigma/du$ compatible with LCWF

Extension of charm measurements in DIS

- D^* in DIS extended to low Q^2
- 98-00 BPC data (L=80 pb⁻¹)
- down to $Q^2 \sim 0.05 {
 m GeV}^2$
- Good agreement with NLO (HVQDIS)

- test fragmentation also in DIS
- \bullet compare to HVQDIS \times fragmentation
- $f(c \rightarrow D)$ from e^+e^- , Peterson fragm. with ϵ =0.035
- D_s rate higher than expected ?

 $\sigma(ep \rightarrow e'DX)$ (nb) $Q^2 > 1.5 \text{GeV}^2, \ 0.2 > y > 0.7, \ p_T(D) > 3 \text{GeV}, \ |\eta(D)| < 1.6$ Meson ZEUS 98-00 (prel.) HVQD $7.44 \pm 0.78^{+0.29}_{-0.49}$ D^0 7.14 D^+ 2.42 ± 0.30 3.02 D_S 2.25 ± 0.30 1.32 $3.22 \pm 0.08^{+0.07}_{-0.05}$ D^* 3.06

Charm in HERA-II data

- First look at the D^+ signal in 03-04 data (15 pb⁻¹) with the new MVD
- inclusive (PhP + DIS) sample, $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$, $p_T(D^+) > 3.7 \text{GeV}$
- Cutting on significance of D^{\pm} secondary vertex improves dramatically the signal to background ratio

Beauty in HERA-II data

- First look at beauty with MVD
- 03-04 data (20 pb⁻¹)
- Dijet+ μ PhP sample, $p_T^{\text{jet}} > 6,7 \text{GeV}$ $p_T^{\mu} > 0.75$ GeV (loose μ selection)
- $f_b = 16.1 \pm 2.7 (\text{stat.})\%$ from p_T^{rel} fit
- μ impact parameter wrt beam spot: excess at positive δ

• Subtracted positive excess compatible with b + c MC -b MC normalized to f_b from p_T^{rel} -c MC from MC prediction for $f_c/(f_{udsg})$

Lepton Flavour Violation

• search for

$$ep \to \mu X$$

 $ep \to \tau X$

- no candidate found
- limits on LF-violating LQs
- independent from final quark flavour
- limits on $e \to \tau$ stronger than from B and τ decays

- Stop may be the lightest squark
- produced via *R*-parity violating coupling

$$\lambda'_{131}: e^+d \to \hat{t}$$

• for small λ'_{131} decays mainly via chargino:

- 98 00 data (65.5 pb⁻¹)
- NC DIS events with large circularity, large y and $Q^2 > 3000 \text{GeV}^2$
- No peak found in hadron+e mass
- limits on λ'_{131} vs $M_{\tilde{t}}$
- low dependence on MSSM parameters

Dimuon production

• No deviation from SM (GRAPE)

W production

- W production: very low cross section ($\sigma_{SM} \sim 1$ pb)
- search for $W \rightarrow e\nu$: electron and missing- p_T
- 98-00 data: 63 pb^{-1} (94-97 already published)
- \bullet good agreement with SM
- Upper limit: $\sigma(ep \rightarrow eWX) < 2.8$ pb (98% CL)

	Events
data	5
W (SM)	3.2 ± 1.1
bkg (SM)	3.5 ± 1.8

Charmed Pentaquarks I

- New paper, improved analysis
- search for $\Theta_c^0 \to D^*p$
- all HERA-I data (126 pb⁻¹)

- $42680 \pm 350 \ D* \ from \ (K\pi)\pi_S$
- 19900 ± 250 *D** from $(K\pi\pi\pi)\pi_S$
- improved proton ID via dE/dx

Charmed Pentaquarks II

- no signal in both channels
- no signal at $Q^2 > 1 \mathbf{GeV}^2$
- upper limit on $R = N(\Theta_c \rightarrow D^*p)/N(D^*)$ for D^* in $P_T > 1.35 \text{GeV}$, $|\eta| < 1.6$
- R < 0.29% at 95% CL, R < 0.41% for $Q^2 > 1 \text{GeV}^2$
- $R \sim 1\%$ excluded at 9σ

Strange Pentaquark

- cross section and $R = N(\Theta^+ \rightarrow K_S^0 p) / N(\Lambda(1116))$ for published $\Theta^+ \rightarrow K_S^0 p$ signal
- $Q^2 > 20 \text{GeV}^2$, $p_T > 0.5 \text{GeV}$, $|\eta| < 1.6$
- $\sigma(ep \rightarrow e\Theta^+ X) = 125 \pm 27 (\text{stat.})^{+36}_{-28} (\text{syst.}) \mathbf{pb}$
- $R = (4.2 \pm 0.9 (\text{stat.})^{+1.2}_{-0.9} (\text{syst.})) \%$
- \bullet no dependence from the Q^2 cut observed

Summary

- still many new results from HERA-I data
- first physics results from HERA-II

dijet+dimu event $ep \rightarrow eb\bar{b}X \rightarrow e(j\mu^+)(j\mu^+)$ $p_T^{\rm rel}(\mu 1) = 1.24 \text{GeV}$ $p_T^{\rm rel}(\mu 2) = 2.05 \text{GeV}$ $\delta(\mu 1) = +250 \mu \text{m}$ $\delta(\mu 2) = +330 \mu \text{m}$

Charmed Pentaquark with H1 selection

