Silicon Tracking Detectors for the LHC experiments

Vincenzo Chiochia

Physik Institut der Universität Zürich-Irchel CH-8057 Zürich (Switzerland)

> DESY Seminar March 7th, 2006

Outline

Part 1:

Part 2:

- 1. Tracking at the LHC experiments
- 2. The CMS and Atlas silicon tracker
- Performance degradation with irradiation
 Physical modelling of radiation damage
 Model applications

V. Chiochia – Silicon Tracking Detectors for the LHC experiments, DESY Seminar, March 7th 2006

Experiments at the LHC

Experiments at LHC:

- **ATLAS** A Toroidal LHC ApparatuS. (Study of Proton-Proton collisions)
- **CMS** Compact Muon Solenoid. (Study of Proton-Proton collisions)
- ALICE A Large Ion Collider Experiment. (Study of Ion-Ion collisions)
- UCh (Study of CD violation in P mason decays at the LUC collider)
- LHCb (Study of CP violation in B-meson decays at the LHC collider)

Atlas and CMS

- Efficient and robust pattern recognition:
 - High speed to resolve bunch crossing
 - Fine granularity to resolve nearby tracks
- Reconstruct narrow heavy objects:
 - 1-2% P_T resolution at 100 GeV
- Tag b's and tau's through seconday vertices
- Radiation hardness of all components
 - Up to 3×10¹⁴ n_{eq}/cm²/year at full luminosity in the innermost layers

Minimum bias events

Luminosity = 10^{34} cm⁻²s⁻¹ = 10^{7} mb⁻¹Hz Interaction rate = 10^{7} x80 = 8x10⁸ Hz Interactions/crossing = 20

 $\sigma(pp) = 80 \text{ mb at } 14 \text{ TeV}$ Bunch crossing = 25 ns = 2.5x10⁻⁸ s

Detector occupancy

- Efficient and robust reconstruction with few hits requires occupancy below few %
- At small radii need cell size << 1cm² and fast (~25ns) shaping time.
- This condition is relaxed at large radii

Example: CMS Tracker

Innermost layers: Pixels - Size=100x150 μm²

Strip length ranges from 10cm in the inner layers to 20cm in the outer layers

Pitch ranges from 80µm in the inner layers to ~200µm in the outer layers

Detector channels = $\mathcal{O}(10^7)$

Momentum measurement

P ~ radius of curvature of track~ 1 / Sagitta

Goal:

 $\Delta P_t / P_t \sim 0.1 \cdot P_t (P_t \text{ in TeV})$ allows to reconstruct $Z \rightarrow \mu + \mu$ - with $\Delta m_z < 2 \text{ GeV}$ up to $P_t \sim 500 \text{GeV}$

Example:

Twelve measurement layers Spatial resolution=(Pitch/ $\sqrt{12}$) Radius = 110 cm

$$\frac{\Delta p}{p} \approx 0.12 \left(\frac{pitch}{100\,\mu m}\right)^1 \left(\frac{1.1m}{L}\right)^2 \left(\frac{4T}{B}\right)^1 \left(\frac{p}{1Tev}\right)$$

Result:

Pitch in the r ϕ direction: around 100 μm Spatial resolution ~ 20-40 μm

Radiation hardness

V. Chiochia – Silicon Tracking Detectors for the LHC experiments, DESY Seminar, March 7th 2006

Fluence per year at full luminosity

Atlas tracker

- The Inner Detector (ID) is organized into:
 - Pixels (~8x10⁷ channels)
 - Silicon Tracker (SCT) (~6x10⁶ channels)
 - Transition Radiation Tracker (TRT) (~4x10⁵ channels)

Atlas Semi-Conductor Tracker

Barrel

- 34.4 m² of silicon
- ~3.2 x 10⁶ channels
- 2112 barrel modules (1 type)
- Space point resolution:
 - $r\phi \sim 16 mm$
 - Z~580 mm
- Coverage: |η| < 1.1 to 1.4</p>
- 4 Cylinders

Forward

- ~26.7 m² of silicon
- ~3.0 x 10⁶ channels
- 1976 modules (4 types)
- Space point resolution:
 - $r\phi \sim 16mm$
 - R~580 mm
- Coverage: 1.1 to 1.4 <|η| < 2.5</p>
- 9 disks

Atlas SCT integration

Silicon and TRT tracker integrated on February 17th, 2006

Atlas Pixel Detector

Structure:

3 Barrel layers and 3 disks on each side Innermost layer: r=5 cm Length ~ 1.3 m (3 hits for $|\eta|$ <2.5)

Technology: Hybrid pixels 1744 Readout modules 8x10⁷ pixel cells

CMS Silicon Tracker

CMS Solenoid

23 days, 9 hours cooling down

Conductor:

Superconductor cable (14.5 tonnes) embedded in very pure aluminum (74 tonnes). Structure:

Aluminum alloy (126 tonnes) Insulation (9 tonnes), Total mass of = 223.5 tonnes

B field = 4 T

CMS Silicon Tracker

- Rely on "few" measurement layers, each able to provide robust (clean) and precise coordinate determination:
 - 2 to 3 silicon pixel hits
 - 10 to 14 silicon strip hits

CMS SST: The components

Sensors:

6,136 Thin + 18,192 Thick sensors 512 or 768 strips Rectangular or trapezoidal sensors 9,648,128 strips = channels

Front-end chips:

75,376 APV Chips (0,25 μm CMOS)
Sampling: Peak and deconvolution mode
128 ch, 4.8 μs pipeline depth
25 million wire bonds

Modules:

CMS SST: Integration

CMS Pixel detector

- Hybrid pixel technology
- 3-d tracking with about 66 million channels
- Barrel layers at radii = 4.3cm, 7.2cm and 11.0cm
- Pixel cell size = 100x150 µm²
- 704 barrel modules, 96 barrel half modules, 672 endcap modules
- ~15,000 front-end chips and ~1m² of silicon

CMS Pixel sensors

Hybrid pixel detector Each pixel cell is bump-bonded to its own front end circuit

- *n*-in-*n* type with moderated p-spray isolation
- biasing grid and punch through structures (keeps unconnected pixels at ground potential, I-V tests possible)
- 285 µm thick <111> DOFZ wafer

CMS Pixel readout chip

52 columns

CMS Pixel modules

Automatic bump bonding in-house at PSI

Priorities for 2006:

- Complete integration and commissioning of the Tracker at CERN
- Magnet test and cosmic challenge: CMS slice test with cosmics
- 25% System test

HW Status:

- TIB+/TID+ integration in Italy in very good shape.
- TEC+ integration in Aachen started (first sector of 18 petals completed)
- TOB integration planned to start at CERN (week 9). TOB module construction completed at FNAL.
- Pixels: start barrel module production May 06. Mechanical support structures for 2007 pilot run ready by end 06.
- SW plans:
 - Software for magnet test fully commissioned by April 06
 - Software for 25% system test fully commissioned by June 06

Performance degradation after irradiation

- "Assembled and installed detector" does not mean "ready for physics"!
- Detector commissioning and calibration software development is a very delicate phase where detectors experts and sw developers must collaborate and share know-how.
- Calibration of a silicon detector involves e.g.:
 - Pedestals, tune thresholds, spot noisy or dead channels
 - Charge collection efficiency and trapping
 - Lorentz angle, alignment etc.
- The physical properties of a silicon detector will change under heavy irradiation. Calibrations must be kept up-to-date.
- A "case study": CMS pixels (similar case for LHC strip detectors but lower fluence, no oxygenation)

Type inversion

- After irradiation the sensor bulk becomes more acceptor-like
- The space charge density is constant and negative across the sensor thickness
- The p-n junction moves to the pixel implants side
- Sensors may be operated in "partial depletion"

Charge collection measurements

Hit detection efficiency

M.Swartz, *Nucl.Instr. Meth.* A511, 88 (2003); V.Chiochia, M.Swartz et al., *IEEE Trans.Nucl.Sci.* 52-4, p.1067 (2005).

Models with constant N_{eff}

A model based on a type-inverted device with constant space charge density across the bulk does not describe the measured charge collection profiles

Two-traps effective models

The double peak electric field

V.Eremin et al., NIM A 476 (2002) p476, NIM A 476 (2002) p537

Model constraints

- Idea: extract model parameters from a fit to the data
- The two-trap model is constrained by:
 - 1. Comparison with the measured charge collection profiles
 - 2. Signal trapping rates varied within uncertainties

$$Q_{e,h}(t) = Q_{0e,h} exp\left(-\frac{1}{\tau_{e/h}}t\right)$$

$$\begin{split} \Gamma_{e} &= 1/\tau_{e} = \beta_{e} \Phi_{eq} \cong v_{e} \sigma_{e}^{A} N_{A} \\ \Gamma_{h} &= 1/\tau_{h} = \beta_{h} \Phi_{eq} \cong v_{h} \sigma_{h}^{D} N_{D} \end{split}$$

3. Measured dark current

$$I = \sum_{j=D,A} \frac{v_{h}v_{e}\sigma_{h}^{j}\sigma_{e}^{j}N_{D}(np - n_{i}^{2})}{v_{e}\sigma_{e}^{j}(n + n_{i}e^{E_{j}/kT}) + v_{h}\sigma_{h}^{j}(p + n_{i}e^{-E_{j}/kT})}$$

Typical fit iteration: (8-12h TCAD) + (8-16h PIXELAV)xV_{bias} + ROOT analysis

Fit results

Scaling to lower fluences

Space charge profile

V.Chiochia, M.Swartz, et al., physics/0506228

- Space charge density uniform before irradiation
- Current conservation and non uniform carrier velocities produce a non linear space charge density after irradiation
- The electric field peak at the p+ backplane increases with irradiation

Temperature dependence

Impact on reconstruction

Lorentz deflection

Switching on the magnetic field:

tan(θ) linear in the carrier mobility $\mu(E)$: tan $\theta_L = r_H \mu(E) B \sin \theta_{\nu R}$

LHC startup

2 years LHC low luminosity 2 years LHC high luminosity

The Lorentz angle can vary a factor of 3 after heavy irradiation: This introduces strong non-linearity in charge sharing

Position resolution

- Position resolution along the rcoordinate from simulation
- Pitch = 100 μm, Lorentz effect
- Before irradiation:
 - Size = 2, α =0° $\rightarrow \sigma \sim$ 9 μ m
- After irradiation (6x10¹⁴ n/cm²)
 - Size = 2, α =0° \rightarrow σ ~ 12 μ m
- Eta corrections can improve resolution after irradiation!

- z (longitudinal) coordinate: residuals mean along the z coordinate vs. pseudorapidity
- Large systematic shifts after irradiation!

E.Alagöz et al., physics/0512027

Summary

- After heavy irradiation trapping of the leakage current produces electric field profiles with two maxima at the detector implants. The space charge density across the sensor is <u>not</u> uniform, only ~half of the junction type-inverts.
- What is the meaning of V_{dep}, depletion depth and type inversion? Measurements reflecting the electric field profile (e.g. TCT, CCE, long clusters etc.) are preferable to C-V characterization to understand radiation damage in running detectors
- A physical model based on two defect levels can describe the charge collection profiles measured with irradiated pixel sensors in the whole range of irradiation fluences relevant to LHC operation
- Our model is an "effective theory": e.g. in reality there are several trap levels in the silicon band gap after irradiation. However, it is suited for calibration and software development related to silicon detectors at LHC.
- We are currently using the PIXELAV simulation to develop hit reconstruction algorithms and calibration procedures optimized for irradiated pixel sensors.

References

PIXELAV simulation:

M.Swartz, "CMS Pixel simulations", Nucl.Instr.Meth. A511, 88 (2003)

Double-trap model:

- V.Chiochia, M.Swartz et al., "Simulation of Heavily Irradiated Silicon Pixel Sensors and Comparison with Test Beam Measurements", *IEEE Trans.Nucl.Sci.* 52-4, p.1067 (2005), eprint:physics/0411143
- V. Eremin, E. Verbitskaya, and Z. Li, "The origin of double peak electric field distribution in heavily irradiated silicon detectors", *Nucl. Instr. Meth.* A476, pp. 556-564 (2002)

Model fluence and temperature dependence:

- V.Chiochia, M.Swartz et al., "A double junction model of irradiated pixel sensors for LHC", accepted for publication on *Nucl. Instr. Meth.A*, eprint:physics/0506228
- V.Chiochia, M.Swartz et al., "Observation, modeling, and temperature dependence of doubly-peaked electric fields in silicon pixel sensors", Accepted for publication on *Nucl. Instr. Meth.A*, eprint:physics/0510040

